Index terms

Links

Index

A		
Absorbers	11.46	
Absorption, tropospheric	2 .47	
Accuracy in height finding radar	20 .19	
Acquisition of targets in tracking radar	18.26	
Active seekers	19 .15	
transmitters for	19.38	
Active stabilization of CW radar	14 .8	
Active-switch modulators	4.35	
A/D converter (see Analog-to-digital converter)		
Adaptive arrays	9 .14	
Adaptive motion compensation in AMTI radar	16.23	
Adaptive MTI radar	15 .61	
Adaptive thresholding	8 .13	
AEW radar	16 .1	
AGC:		
clutter map and	3 .18	
in monopulse tracking	18 .10	18 .16
Air traffic control with SBR	22 .30	
Airborne radar (see AMTI radar; Pulse doppler radar)		
Airborne radomes	6 .46	
Aircraft, radar cross section of	11 .16	
Allomorphic forms in pulse compression	10 .17	
Alpha-beta tracking filter	8 .30	
Altimeters	14.34	
in SBR	22 .3	

<u>Index terms</u>		<u>Links</u>	
Ambiguities:			
in doppler weather radar	23 .10		
in pulse doppler radar	17.5	17 .19	
in SAR	21 .14		
Ambiguity function in SAR	21 .8		
Amplifier chain transmitters	4 .9		
Amplifier power tubes	4 .12		
Amplitron	4 .13		
Amplitude-comparison monopulse	18 .9		
Amplitude-discrimination CFAR	3 .47		
AMTI radar:			
adaptive motion compensation in	16.23		
antenna sidelobes and, effect of	16 .13		
coincident phase center technique in	16.20		
DPCA in	16 .8	16 .16	
and ground moving targets	16.29		
multiple spectra and, effect of	16.29		
platform motion in	16.2	16 .17	
and platform motion compensation in forward direction	16.20		
pulse envelope shift and, limitation due to	16.28		
and ranging noise	16.28		
scanning-motion compensation of	16 .14		
space-time adaptive compensation of	16.23		
TACCAR	16.3	16.5	
AN/APQ-164	7.69		
AN/APY-1 (AWACS)	6 .9	7 .72	20 .12
AN/CPS-6B	20 .6		
AN/FPQ-6	18.2	18.24	
AN/FPS-6	20 .3		
AN/FPS-24	6 .47		
AN/FPS-49	6 .47		
AN/FPS-115	5 .3	5 .25	

1.3

5.25

5.23

Index terms		<u>Links</u>	
Antennas: (Continued)			
design considerations for	6 .34		
directivity of	6 .3		
and ECCM	9 .7		
effective aperture of	6 .4		
errors in	6 .41		
feed blockage in	6 .34		
feed spillover in	6 .37		
feeds for	6 .21	6 .26	18 .11
gain of	6 .3		
for HF OTH radar	24 .5		
introduction to	1.3		
leakage through surfaces of	6 .40		
lobe pattern of	2 .34	2 .62	
loss of gain in, due to errors	22 .6	22 .9	
low-sidelobe	7 .37		
and ECCM	9.24		
mechanical considerations for	6 .40		
mirror	18.32	19.34	
for missile guidance	19.33		
monopulse feeds for	6 .21	18 .11	
multiple beams for	6 .19		
multiple reflector	6 .23		
noise temperature of	2 .28		
parabolic cylinder	6 .10	6 .11	6 .15
paraboloidal reflector	6 .10		
pattern ranges for	6.52		
polarization of	6 .10		
radiation patterns of	6.4		
radomes for	6.44		
reciprocity in	6.2		
reflector analysis of	6.27		

Links

6.41

6 1

17.11 **6**.8

6.31

6.52

6.10

24.13

19 18

15.65

6 14

2 44

20.15

23.6

23 10

238

23 5

8 1

3.19 **8** 23

6.9

3.50

9.6

15.69

9.22

6.19

9.25

6.47

20 12

7 72

for SBR	22 .18	
shaped-beam	6 .30	
shaped reflector for	6 .17	
sidelobes of	6 .9	7 .37
and effect on AMTI radar	16 .13	

Index terms

Antennas: (Continued) reflector surfaces for

and effect on pulse doppler radar

(See also Phased array radar antennas)

Antiradiation homing for missiles

Antiradiation missile (ARM)

Atmospheric refraction: and coverage diagrams

in height finding

Attenuation:

in clouds by fog

by hail

AWACS

due to weather

Automatic detection

Automatic noise-level control

Automatic tracking with surveillance radar

Azimuthal accuracy effect of CFAR on

This page has been reformatted by Knovel to provide easier navigation.

role of

 $\sin x/x$ pattern STC and

types of reflector

Anthropogenic noise

testing of

Area MTI

ASR-9

Index terms		<u>Links</u>
В		
Balanced-diode detector	3 .36	
Balanced mixer	3 .10	
Bandwidth:		
definitions of	3.20	
of logarithmic detector	3 .26	
noise	2 .14	
of phased arrays	7 .49	
receiver	3 .5	
Barker codes	10 .17	
Batch processor	8 .10	8 .12
Bayliss aperture illumination	20 .29	
Beacon equation	9.4	
Beam splitting	8 .6	
in height finding	20 .3	
Bessel functions in CW radar	14.23	14.38
Binary integrator	8 .9	
Binary sequences	10 .17	
Binomial-weight MTI filter	15 .21	
Bipolar power transistors	5 .5	
Bipolar video	15.4	
Birds in MTI radar	15 .69	
Bistatic radar:		
applications of	25 .8	
area relationships in	25 .9	
beam scan on scan	25 .26	
clutter in	25 .18	25 .27
clutter cell area	25 .12	
clutter tuning	25 .4	
coordinate system for	25 .5	
coverage of	25 .10	
cross-section equivalence theorem for	25 .15	

<u>Index terms</u>		<u>Links</u>
Bistatic radar: (Continued)		
definition of	25 .1	
doppler relationships in	25 .13	
forward scatter	25 .17	
glint reduction in	25 .17	
and ground echo	12 .10	
history of	25 .2	
isodoppler contours	25 .14	
isorange contours	25 .8	
noncooperative transmitter with	25 .4	25 .8
ovals of Cassini	25 .6	
phase synchronization in	25 .28	
pseudo-monostatic radar cross section	25 .15	
pulse chasing in	25 .24	
range equation for	25 .6	
sanctuary	25 .4	
and SAR	25 .4	
sidelobe clutter in	25 .27	
target cross section and	25 .14	
target doppler in	25 .13	
time synchronization in	25 .27	
triangle	25 .5	
Blake's worksheet for range calculation	2 .63	
Blind speeds in MTI radar	15 .7	
Block diagram:		
of conical-scan tracker	18.5	
of CW radar	14.3	
of digital space-time adaptive array	16.24	
of monopulse tracking radar	18 .10	
of MTI radar	15 .3	
of pulse compression radar	10.2	
of pulse doppler radar	17.8	

<u>Index terms</u>		<u>Links</u>	
Block diagram: (Continued)			
of SAR	21 .7		
of semiactive missile seeker	19 .11	19 .13	
of a simple radar	1.2		
BMEWS	4 .3	5 .3	5 .8
Boeing 737, radar cross section of	11 .16		
Boresight error in radomes	6 .51		
Bragg scatter	13 .29		
in HF radar	13 .19	24 .8	
Burnthrough	1.9	9 .17	
C			
C band	1 .14	1 .17	
Cancellation ratio	15 .11		
Capillary waves	13 .3		
Cassegrain antenna	6 .11	6.24	
Cathode pulsers	4.35		
Cell-averaging CFAR	3.47	8 .13	
CFAR	1.5	3 .46	6 .17
	8 .13		
amplitude-discrimination	3.47		
azimuth accuracy and	3 .50		
cell-averaging	3 .47	8 .13	
clutter map	3 .53	8 .20	
in CW radar	14 .19		
loss in	2 .55	3 .47	3 .53
	8 .13		
in MTD	15 .5		
phase discrimination	3 .49		
range resolution and	3 .50	8 .21	
target suppression by	8 .17		

<u>Index terms</u>		<u>Links</u>	
Chaff	9 .19		
radar equation for	9.31		
Chebyshev filter bank	15 .31		
Chinese remainder theorem	17.22		
Chirp pulse compression	10.4		
Circular polarization in phased arrays	7.6		
Clear-air meteorological radars	23 .27		
Clutter:			
in bistatic radar	25 .18	25 .27	
and CW radar	14.3		
discrete echoes	17 .11		
in HF OTH radar	24 .6		
models, of the ground	12 .28		
in MTI radar	15 .8		
in pulse doppler radar	17 .9		
radar equation for	1.10	2 .57	
in semiactive missile guidance	19.5		
typical values of	15.2		
(See also Ground echo; Sea clutter)			
Clutter attenuation in MTI radar	15 .11		
Clutter characteristics in MTI radar	15 .8		
Clutter filter design in MTI radar	15 .23		
Clutter filters for MTI radar	15 .16		
Clutter map	3 .53	8 .13	8 .20
AGC	3 .18		
implementation of	15 .65		
Clutter-spectrum standard deviations	15 .9		
Clutter visibility factor	15 .14		
Coaxial magnetron	4 .7		
COBRA DANE	7 .76		
COBRA JUDY	7 .76		

I.10

Index terms		<u>Links</u>	
Coherent integration	2 .25		
Coho	3 .16	15 .3	
Coincidence phase detector	3 .37		
Collapsing loss	2 .54	8.3	
Combining:			
of power devices in transmitters	4.22		
of solid-state devices	5 .23		
Compact range	6 .56	11.40	
Complementary sequences	10 .21		
Composite-surface model of sea clutter	13 .32		
Computer methods for the range equation	2 .62		
Cone, radar cross section of	11 .10	11.32	11.33
	11.45		
Cone sphere	11.45	11.46	
Conformal arrays	7.3		
Conical-scan tracking	18.3		
Conopulse	18 .21		
Corner reflector	11.13	11 .14	
Correlation processor	10.8		
Cosecant-squared antenna	15 .69		
Cosmos 1500	22 .17	22 .18	22 .23
COSRO	9.27		
Coverage diagrams	2 .44		
Coverage:			
of bistatic radar	25 .10		
of space-based radar	22 .12		
CPACS	3 .49		
CPI	15.29		
Critical angle, in sea clutter	13 .19		
Cross-eye	9.27		
Crossed-field amplifiers (CFAs)	4 .12	4 .19	
This page has been reformatted by Knovel to provide	e easier naviga	tion.	

I.11

Index	term

<u>Index terms</u>		<u>Links</u>	
Crosstalk in tracking radar	18 .48		
Crowbars	4 .40		
Cube, radar cross section of	11.25		
Cumulative probability of detection	2 .60		
CW radar:			
active stabilization in	14.8		
altimeters	14 .34		
Bessel functions in	14.23	14.38	
CFAR in	14 .19		
for clutter measurement	12 .18		
clutter noise	14.3		
doppler:			
filter bank	14 .18		
navigator	14.37		
scatterometer	12 .22		
tracker	14 .18		
double sinusoidal modulation	14.26		
dual modulation	14.30		
feedthrough minimization in	4.3	14 .19	
and FM	14 .21		
homodyne in	14.20	14 .21	14 .31
leakage in	14.30		
local oscillator in	14 .15		
microphonism in	14.7		
noise:			
from clutter	14.3		
measurement of	14 .11		
modulation	14.28		
in transmitter	14.3		
personnel detection	14.39		
phase coding in	14.29		
for police	14 .21		
This page has been reformatted by Knove	el to provide easier naviga	tion.	

<u>Index terms</u>		<u>Links</u>
CW radar: (Continued)		
proximity fuzes	14.20	
microwave	14 .31	
range response tailoring	14.32	14 .41
receivers in	14 .15	
sawtooth modulation for	14.28	
short-range systems and	14 .31	
sinusoidal modulation in	14.23	
spectral spreading in	14.2	
speedgate for	14 .18	
stabilization in	14 .8	
subcarriers in	14 .16	
target illumination	14 .8	14 .15
transmitter sources	14.8	
triangular modulation in	14 .17	
CW wave interference	25 .2	
Cylinder radar cross section of	11.21	
D		
D region	24 .16	
Dällenbach layers	11.47	
Data processing	1.5	
dBZ	23.4	
dc operation of CFAs	4 .13	
Detectability factor	2.6	
Detection:		
automatic	8 .1	
probability of	2.8	2 .18
cumulative	2 .60	
in pulse doppler radar	17.36	
Detector, nonparametric	8 .19	
Detector laws	2 .23	

<u>Index terms</u>		<u>Links</u>
Detectors, comparison of	8 .23	
DF and radar	8.44	
Dicke-Fix	9 .19	
Digital beamforming:		
for height finding radar	20 .13	
in phased array radar	7.8	
Digital log power combiner	3 .29	
Digital logarithm	3 .28	
Digital MTI	15 .53	
Digital phase detector	3 .38	
Digital pulse compression	10.7	
Digital range tracker	18.29	
Diplex operation	3 .54	
Dipole, radar cross section of	11.8	
Directional wave spectrum	13 .3	
Directivity of antennas	6.3	
Discrete clutter	17 .11	
Divergence factor	2 .42	
Dolph-Chebyshev weighting	10 .30	
Doppler:		
in CW radar	14 .18	
frequency shift	14.2	
navigator	14.37	
in pulse compression, correction for	10.24	
scintillation	18 .45	
in semiactive missile guidance	19.3	
tracking in missile guidance	19.26	
weather radar (see Meteorological radar)		
DPCA	16 .8	16 .16
Dual-band monopulse	18 .31	
Ducting	13.25	

1	1

<u>Index terms</u>		Links
Duplexer	1.3	4 .4
Dynamic range:		
of A/D converter	3 .40	
in MTI radar	15 .58	
in pulse doppler radar	17.26	
of receiver	3.4	3 .11
E		
E region	24 .16	
E-2C	16.2	
Early-late gate range trackers	18.27	
ECCM:		
antenna-related	9 .7	
home-on-jam	19 .18	
receiver-related	9 .18	
and signal processing	9 .19	
in surveillance radars	9.23	
in tracking radars	9.25	
transmitter-related	9 .16	
Echo reduction	11.43	
ECM	9.2	9.4
and missile guidance	19 .30	
and terrain bounce	9.27	
Effective aperture of antennas	6.4	
Effective earth's radius	2.44	20 .17
Electronic warfare	9.2	
Electronically Agile Radar (EAR)	7.69	
Electronically scanned phased arrays (see Phased array radar)		
ELINT	9.2	
EMCON	9.22	
Equalization in pulse compression	10.26	
This page has been reformatted by Knovel to provide	easier navig	ation.

Index terms		<u>Links</u>
Errors, effects of, in phased arrays	7.38	
ESM	9.2	
F		
F region	24 .16	
False alarm:		
probability of	2.8	2 .18
in pulse doppler radar	17.35	
False-alarm time	2 .19	
False alarms, control of	8 .12	
Feedback and pulse-to-pulse stagger	15 .37	
Feedback cancelers in MTI radar	15 .23	
Feedback integrator	8 .8	
Feedforward cancelers in MTI radar	15 .23	
Feedthrough nulling in CW radar	4.3	14 .19
FFT filter bank	15 .34	
Field-effect transistors (FETs)	5 .9	
Filter bank design	15 .29	
Filtering in receivers	3 .13	3 .19
Flat plate, radar cross section of	11.12	
FM-CW radar	14 .21	
tailoring of range response in	14.32	14 .41
FM-CW scatterometer	12 .24	
FM noise in microwave sources	14 .13	
Focused synthetic aperture radar	21 .6	
Fog, attenuation by	23 .10	
Forward-scatter radar cross section	25 .17	
Frank polyphase code	10.25	
Frequency agility	9 .17	
Frequency diversity	9 .17	
Frequency-scan height finder	20 .10	

<u>Index terms</u>		<u>Links</u>
FTC	9 .18	
G		
GaAs FETs	5 .9	
Gain-controlled amplifiers	3 .17	
Gain of antennas	6 .3	
Geometric optics	11.25	
and ground echo	12 .8	
Geometric theory of diffraction	11.29	
and antennas	6 .30	
GEOS-C	22 .15	
GEOS-3	22.4	
Glint	18.37	18.5
in bistatic radar	25 .17	
Global boundary-value problems and sea clutter	13.27	
Grating lobes	7.10	7.19
Gravity waves	13 .3	
Grid pulsers	4.39	
Gridlock	8 .43	
Ground echo:		
in bistatic radar	12 .10	25 .27
clutter models for	12 .28	
fading of	12 .12	
internal motion of	12 .18	
measurement techniques for	12 .18	
parameters affecting	12.4	
reflectivity, distribution of	15 .11	
scattering coefficient	12 .35	
sigma-zero examples	12 .36	
theoretical models for	12 .6	

<u>Index terms</u>		<u>Links</u>
Ground moving targets:		
in AMT1	16.29	
in MTI	15 .69	
Ground radomes	6 .47	
Ground wave HF radar performance	24 .38	
Guard channel in pulse doppler radar	17 .12	
Guided missile radomes	6 .46	19.32
Н		
Hail, attenuation by	23 .8	
Hail detection	23 .22	
Hamming weighting	10 .30	
Hard-tube modulators	4.36	
Hawk illuminator	14 .8	
Height finding radar:		
accuracy in	20 .19	
atmospheric refraction correction for	20 .15	
in AWACS	20 .12	
digital beamforming	20 .13	
frequency-scan	20 .10	
lobe switching	20 .2	
at low angle	20 .36	
measurements in	20 .14	
monopulse, accuracy of	20 .25	
multipath in	20 .32	
phased array	20 .11	
scanning pencil-beam	20 .10	
sequential lobing, accuracy of	20 .20	
simultaneous lobing, accuracy of	20 .25	
over spherical earth	20 .14	
stacked-beam	20 .7	
accuracy of	20 .32	

<u>Index terms</u>		<u>Links</u>
Height finding radar: (Continued)		
surface reflections in	20 .32	
Height finding techniques	20 .1	
Height finding in 3D radar	20 .6	
Helisphere antenna	6 .26	
HF OTH radar:		
AN/FPS-118	24 .5	
antennas for	24 .5	
clutter in	24 .6	
ground wave	24 .1	
performance of	24 .38	
ionospheric effects in	24 .15	
noise in	24 .12	
performance of	24 .22	24 .38
propagation with	24 .22	
radar cross section with	24 .10	
radar equation for	24 .3	
receiver-processor for	24 .36	
relocatable (ROTHR)	5 .3	
sea clutter in	13 .19	
sea spectrum measurement with	24 .8	
ship detection with	24 .39	
sky-wave performance of	24 .15	
sky-wave propagation with	24 .2	
and spectrum use	24 .14	
tracking with	8 .38	
transmitters for	24.4	
wind mapping with	24 .9	
HF radar	1 .14	1.15
High-power amplifiers, comparison of	4 .19	
High-PRF ranging	17.20	
High-range-resolution monopulse (HRRM)	18 .30	

Index terms

I

IFF

I 19

14 31

Links

L

L band

<u>Index terms</u>		<u>Links</u>
Integration: (Continued)		
noncoherent	2 .25	
postdetection	2 .25	
predetection	2 .25	
of radars	8 .40	
of signals	2 .17	
Integrators	8 .3	
Interclutter visibility	15 .13	
and clutter map.	3 .53	
Interference region	2 .43	
Interferometer height finder	20 .6	
Inverse Cassegrain	18.32	19 .34
Inverse receiver for semiactive guidance	19 .12	
Inverse synthetic aperture radar (ISAR)	21 .21	
Ionograms	24 .17	
Ionosphere	24 .15	
Isodops in airborne radar	12 .15	
J		
Jamming	9.4	
radar equation for	1.9	9 .29
Jaumann absorber	11.48	
JETDS nomenclature	1 .18	
K		
K band	1 .14	1 .17
Kalman filter	8 .28	8 .36
Klystron	4 .14	4 .19
•		

8.43

1.14 **1**.16

This page has been reformatted by Knovel to provide easier navigation.

7.37

9.24

Links

Lambert's law	12 .7	13 .16	13 .34
Laser frequencies	1.18		
Lens-effect loss	2 .52		
Letter-bands for radar	1.14		
Likelihood ratio	8.2		
Limiter	3 .30		
Limiting in MTI radar	15 .41		
Line-type modulators	4.33		
Linear array	7.10		
Linear-beam tubes	4 .12		
Linear-FM pulse compression	10.4		
delay lines for	10 .12		
Stretch processor	10.8		
Taylor weighting in	10 .30		
Lobe switching	18.3		
in height finding	20 .2		
Local oscillator	3 .11		
Log-CFAR	8 .18		
Logarithmic amplifier	3 .28		
Logarithmic detector	3 .26		
Logarithmic devices	3 .25		
Logarithmic receiver for ECCM	9 .18		
Loss:			
in CFAR	3.47	3 .53	8 .13
filter mismatch	15 .14		
Loss factors in radar equation	2 .46		
Low-angle height finding	20 .36		
Low-angle tracking	18 .46	18 .54	

Index terms

Low-sidelobe antennas

Index terms		<u>Links</u>	
M			
Madre OTH radar	24 .5		
Magnetrons	4.5		
Main-beam clutter in pulse doppler radar	17 .16		
Man, radar cross section of	11 .16		
Man-made noise	24 .13		
Maneuvering gate in automatic tracker	8 .31		
Marcum universal curve	17 .37		
Martello radar	20 .8		
Matched filter			
approximations to	3 .21		
in pulse compression	10 .1		
Maximal-length sequences	10 .19		
Maximum-entropy method	15 .64		
Maximum-likelihood tracker	8 .38		
Medium-PRF ranging	17.25		
Mesocyclones	23 .20		
Metal space-frame radomes	6 .47		
Meteorological radar:			
airborne	23 .26		
ambiguities in	23 .10		
applications of	23 .17		
attenuation in	23 .5		
dBZ in	23 .3		
design considerations for	23 .5		
doppler	23 .1	23 .13	23 .15
	23 .18		
doppler spectrum of	23 .14		
fog attenuation in	23 .10		
ground clutter effects in	23 .11		
hail attenuation in	23 .8		
hail detection with	23 .22		

<u>Index terms</u>		<u>Links</u>	
Meteorological radar: (Continued)			
measurement accuracy of	23 .15		
microburst detection with	23 .20		
multiple	23 .24		
multiple-parameter	23 .23		
NEXRAD	23 .1	23 .13	23 .18
precipitation measurement with	23 .18		
processor implementation in	23 .17		
pulse compression in	23 .28		
pulse-pair algorithm in	23 .15		
rain attenuation in	23 .7		
range equation for	23 .2		
rapid scanning	23 .25		
reflectivity factor in	23 .3	23 .18	
research applications of	23 .23		
SAR as a	23 .28		
severe storm warning with	23 .19		
signal processing in	23 .13		
spaceborne	23 .27		
thunderstorm prediction with	23 .23		
tornado detection with	23 .19		
velocity-azimuth display for	23 .22		
wind measurement with	23 .22		
wind profiler	23 .28		
Method of moments	10.2	10.23	
Microbursts	23 .20		
Microphonism	14.7		
Millimeter wave frequencies	1 .14	1 .17	
Millimeter wave sea clutter	13 .20		
Millimeter wave solid-state sources	5 .11		
Minimum detectable signal	1.7		
Mirror antenna	18 .32	19.34	

<u>Index terms</u>		<u>Links</u>	
Missile guidance:			
active seekers	19 .15		
antiradiation homing	19 .18		
home-on-jam	19 .18		
multimode	19 .21		
passive seekers	19 .17		
radiometric	19.20		
range tracking in	19.26		
(See also Semiactive missile guidance)			
Mixers	3 .8	3 .22	
MMIC	5 .16		
Mod-anode pulsers	4.37		
Modified generalized sign test detector	8 .19		
Modulators	4.25	4.29	4.32
Module (solid-state) design	5 .15		
Monopulse tracking radar:			
AGC in	18 .10	18 .16	
amplitude-comparison	18 .9		
angle measurement in	3 .34		
antennas for	6 .21	6.24	18 .11
Conopulse	18 .21		
dual-band	18 .31		
and ECCM	9.27		
height finding accuracy	20 .25		
and high-range resolution	18 .30		
phase-comparison	18 .17		
phased arrays	7.4	18 .19	
SCAMP	18 .19		
single-channel	18 .19		
tracking with	18 .8		
two-channel	18.20		
MOPA transmitter chain	14 .8		

<u>Index terms</u>		Links
Motion compensation:		
in AMTI radar	16 .8	16 .17
in SAR	21 .20	
MOTR	18 .34	
MTBF of solid-state module	5.4	
MTD	15 .5	
Moving-window detector	8.4	
MTI radar:		
A/D converter in	15 .57	
adaptive	15 .61	
airborne (see AMTI radar)		
automobile detection with	15 .69	
binomial-weight filter in	15 .21	
birds and	15 .69	
blind speeds in	15 .7	
block diagram of	15 .3	
clutter filter design in	15 .23	
clutter map in	15 .65	
clutter visibility factor in	15 .14	
cosecant-squared antenna in	15 .69	
and ECCM	9 .19	
filter bank design in	15 .29	
I and Q balance in	15 .59	
improvement factor:		
calculations for	15 .14	
definition of	15 .11	
insects in	15.69	
instability limitations in	15 .52	
interclutter visibility in	15 .13	
internal-clutter fluctuations in	15 .15	
limitation due to scanning in	15 .27	
limiting in	15 .41	

Index terms		<u>Links</u>	
MTI radar: (Continued)			
from a moving platform (see AMTI radar)			
optimum clutter filters	15 .16		
phase-sensitive detector in	3 .33		
and PRF stagger	15 .16		
and pulse compression	15 .50	15 .55	
and pulse doppler radar	17.2		
quantization noise in	15 .53		
and response to moving targets	15 .7		
scanning modulation in	15 .14		
stability requirements in	15 .45		
staggered PRF in	15 .34		
STC in	15.69		
subclutter visibility in	15 .13		
time-varying weights in	15 .40		
and transmitter stability	4.25	4 .30	
visibility factor in	15 .14		
Multifunction radar	7 .1		
Multimode guidance for missiles	19 .21		
Multipath:			
in height finding	20 .32		
in missile guidance	19 .30		
in tracking radar	18 .46	18.54	
Multiple-PRF ranging	17 .20		
Multiplier detector	3 .36		
Multistatic radar	25 .1		
N			
NAVSPASUR	5 .3	5 .8	5 .28
	5 .29		
Near-field ranges	6 .56		
Netted radar	8 .43		

<u>Index terms</u>		<u>Links</u>	
NEXRAD	23 .1	23 .13	23 .18
Neyman-Pearson criterion	8 .2		
Nodding-antenna height finding	20 .3		
Noise:			
anthropogenic	24 .13		
in IF limiter	3 .30		
and interference	24 .12		
measurement of:			
in CW radar	14 .11		
in pulsed transmitters	14 .14		
due to target	18.34		
and tracking accuracy	18 .50		
Noise bandwidth	2 .14		
Noise degeneration in transmitters	4.30		
Noise figure	1.7		
Noise jamming	9.23		
Noise-modulated CW radar	14.28		
Noise temperature	2 .26	3 .11	
Nomenclature for radar	1.18	17 .1	
Noncoherent integration	2 .25		
Nonlinear-FM pulse compression	10.4		
Nonparametric detectors	8 .19		
North, D. O.	2 .3	2.6	2.
,	2 .15		
0			
Ogive, radar cross section of	11.9		
On-axis tracking	18.33		
Operator and ECCM	9 .21		
Optimum clutter filters	15 .16		
Orbit selection for SBR	22 .5		

1.27

Index terms

	-		
Oscillator versus amplifier	4 .9		
Outdoor test ranges	11.38		
Ovals of Cassini	25 .6		
Over-the-horizon radar (see HF OTH radar)			
P			
Paired echoes in pulse compression	10.27		
Parabolic-cylinder antenna	6 .10	6 .11	6 .15
Parabolic reflector antenna	6 .10		
Passive ECM	9.5		
Passive tracking and radar	8.44		
Patriot phased array radar	7.69		
Pattern propagation factor	2 .31	2 .61	
Pattern ranges	6 .52		
PAVE PAWS	5 .3	5.4	5 .7
	5 .25	7 .75	
Peak power	2 .10		
Pedestals in CFAs	4 .13		
Personnel detection with CW radar	14.39		
Phamp	3 .31		
Phase-coded CW radar	14.29		
Phase-coded waveforms	10 .15		
Phase-comparison monopulse	18 .17		
Phase detectors	3 .32		
Phase-discrimination CFAR	3 .49		
Phase noise in oscillators	15 .48		
Phase-sensitive detector	3 .33		
Phase shifters	7.63		
Phase tracker	3 .33		
Phased array radar:			
adaptive	9 .14		
m: 1 1 0 0 11 W	• • • • • • •		
This page has been reformatted by Knovel to pro-	ovide easier navigat	ion.	

Links

<u>Index terms</u>		<u>Links</u>
Phased array radar: (Continued)		
aperture matching of	7.22	
bandwidth of	7.49	
bandwidth limitation in	7.3	
beam-pointing accuracy of	7.43	
beam steering in	7.13	7 .17
circular polarization in	7.6	
conformal	7.3	
constrained feeds for	7.58	
digital beamforming in	7.8	
diode phasers for	7.63	
dual-mode phasers for	7.66	
element impedance in	7 .27	
element pattern in	7.25	
element phasing in	7.21	
errors in	7.38	
feed networks for	7.58	
ferrite phasers for	7.64	
frequency scanning of	7.8	
fundamental relationships in	7.2	
grating lobes in	7.10	7 .19
height finding with	20 .11	
illumination functions for	7 .37	
lens array	7.48	
linear	7.10	
low sidelobes in	7.37	
monitoring of	7.4	
monopulse	7.4	18 .19
multifunction	7.1	
mutual coupling in	7.23	
optical feeds for	7.58	
parallel feeds for	7.60	

<u>Index terms</u>	<u>]</u>	<u>Links</u>	
Phased array radar: (Continued)			
periodic errors in	7.45		
phase shifters for	7.63		
planar:			
beam steering of	7 .17		
gain of	7 .15		
and power combining	4.23		
quantization effects in	7.43		
quantization lobes in	7 .48		
radiating elements for	7 .5		
reflectarray	7.58		
scanning of	7 .7	7.13	7 .17
series feed for	7.60		
and small arrays	7 .35		
solid-state modules for	7 .67		
subarrays for	7 .61		
amplitude quantization effects in	7.48		
bandwidth of	7 .53	7 .57	
system examples of	7 .69		
theory of	7 .10		
thinned	7.26		
3D volumetric search	7.4		
time-delay networks for	7.56		
time-delay scanning of	7 .7		
waveguide simulators for	7.32		
wide bandwidth	7.6		
Phillips spectrum	13 .5		
Physical optics	11.26		
and ground echo	12 .9		
Physical theory of diffraction	11.30		
Pierson-Moskowitz spectrum	13.4	24 .6	
Planetary radar	22 .29		

<u>Index terms</u>		<u>Links</u>
Platform motion in AMTI radar	16.2	16 .17
Polarization:		
of antennas	6 .10	
and sea spikes	13 .17	
Police radar	14 .21	
Polyphase codes	10.25	
Postdetection integration	2 .25	
Power-aperture product	4.2	
Power combining of solid-state devices	5 .23	
Power transistor system applications	5 .8	
PPI display	1.5	
Precipitation, measurement by radar of	23 .18	
Predetection integration	2 .25	
PRF:		
Multiple, and ranging with	17.20	
in pulse doppler radar	17 .1	17.5
staggered	15 .17	15 .34
and transmitter stability	4 .27	
Probability of detection	2 .8	2 .18
cumulative	2 .60	
in pulse doppler radar	17.36	
Probability of false alarm	2 .8	2 .18
in pulse doppler radar	17.35	
Projection-slice theorem	21 .22	
Propagation	2 .31	
with HF OTH radar	24 .22	
Propeller modulation	18 .36	
Proportional navigation	19 .7	
Proximity fuzes	14.20	
microwave	14 .31	
Pseudorandom sequences	10 .19	

<u>Index terms</u>		<u>Links</u>
Pulling figure	4.8	
Pulse chasing in bistatic radar	25 .24	
Pulse compression radar:		
allomorphic forms in	10 .17	
Barker codes in	10 .17	
binary sequences in	10 .17	
block diagram of	10.2	
chirp	10.4	
complementary sequences in	10.21	
digital	10.7	
and diplex operation	3 .54	
doppler correction in	10.24	
and ECCM	9.21	
equalization in	10.36	
linear-FM	10.4	
and matched filter	10 .1	
maximal-length sequences in	10 .19	
and meteorological radar	23 .28	
and MTI	15 .50	15 .55
nonlinear-FM	10.4	
paired echoes in	10.27	
phase-coded	10 .15	
polyphase codes in	10.25	
pseudorandom sequences in	10 .19	
quadratic residue sequences in	10 .21	
SAW delay lines in	10.3	10 .10
shift register in	10 .19	
sidelobe reduction in	10.27	
Stretch	10.8	
summary table of	10.5	
Taylor weighting for	10.34	
time-frequency coding in	10.26	

Index terms		Links
Pulse compression radar: (Continued)		
and transmitter	4 .27	
weighting in	10.29	
Pulse doppler radar:		
altitude-line clutter in	17 .18	
ambiguities in	17 .5	
resolution of	17 .19	
antenna sidelobes in	17 .11	
applications of	17 .1	17.2
basic configuration of	17 .7	
clutter in	17 .9	
comparison of, with MTI	17.2	
dynamic range requirements in	17.26	
eclipse in	17.26	
eclipsing loss in	17 .34	
guard channel in	17 .12	
high-PRF ranging in	17.20	
linear-carrier FM ranging in	17.23	
loss in	17.34	
main-beam clutter in	17 .16	
medium-PRF ranging in	17.25	
nomenclature for	17 .1	
PRF in	17 .1	17.5
probability of detection in	17.36	
probability of false alarm in	17.35	
radar range equation for	17.33	
range gating in	17 .19	
in semiactive missile guidance	19 .15	
sidelobe clutter in	17.4	
spectrum of	17.2	
spurious modulations in	17.29	
stability requirements for	17.28	

<u>Index terms</u>		Links
Pulse doppler radar: (Continued)		
STC in	17 .12	
Swerling target models in	17.38	
target tracking in	17.25	
time gating in	17 .19	
Pulse-pair algorithm	23 .15	
Pulse shaping in transmitters	4 .31	
Pushing figure	4 .8	
Q		
Quadratic residue sequences	10 .21	
Quadrature detector	3 .33	
Quantization effects in phased arrays	7.43	
Quantization noise:		
in A/D converter	3 .40	
in MTI radar	15 .53	
R		
Rabbit-ear oscillations	4 .16	
RAC delay line	10 .11	
Radar:		
block diagram of	1.2	
frequencies	1.13	
letter-band frequency designations for	1 .14	
nomenclature	1 .18	17 .1
Radar cross section:		
absorbers and	11.46	
of B-26	11 .16	
bistatic	25 .14	
of bodies of revolution	11.45	
of Boeing 737	11 .16	
of C-54	11 .18	

<u>Index terms</u>		<u>Links</u>	
Radar cross section: (Continued)			
of complex objects	11.13		
of cone	11 .10	11.32	11.33
	11.45		
of cone frustrum	11.32	11.33	
of cone-sphere	11.45	11.46	
of corner reflector	11 .14		
of cube	11.25		
of cylinder	11 .21		
definition of	11.2		
of dipole	11.8		
examples of	11.4		
of flat plate	11.12		
HF	24 .10		
of insects	11 .15		
of man	11 .16		
measurement of	11.34		
of ogive	11.9		
prediction of	11 .18		
reduction of	11.43		
of ships	11 .16		
of sphere	11.5		
summary of	11 .51		
summary values of	11 .11	11.20	
of a wire	11.6	11.8	
Radar (range) equation	2.4		
for bistatic radar	25 .6		
Blake's worksheet for	2 .63		
and chaff	9 .31		
for clutter	1 .10	2 .57	
derivation of	1.6		
factors involved in	2 .10		

<u>Index terms</u>		<u>Links</u>	
Radar (range) equation (Continued)	2.4		
for HF OTH radar	24 .3		
jamming	1.9	9 .29	
losses in	2 .46		
for meteorological targets	23 .2		
for pulse doppler radar	17.33		
for tracking	1.8		
for volume search	1.8		
Radar guidance of missiles	19 .1		
Radar range prediction:			
accuracy of	2 .60		
philosophy of	2 .2		
(See also Radar equation)			
Radar transmission equation	2.4		
Radial velocity, measurement of	1 .11		
Radiometer-scatterometer	12 .28		
Radiometric homing	19 .20		
Radomes	6.44		
airborne	6 .46		
boresight error in	6 .51		
and environmental effects	6 .45		
ground	6 .47		
high-temperature	6 .46		
junction effects in	6 .48		
for missile guidance	19.32		
RADSCAT	12 .28		
Rain:			
attenuation in	23 .7		
effect of, on sea clutter	13 .23		
RAMP	5 .3	5 .8	5 .28
Range ambiguities in pulse doppler radar	17.5	17 .19	
Range equation (see Radar equation)			

<u>Index terms</u>		<u>Links</u>
Range-gate pull-off (stealer)	9.26	
Range-height-angle chart	2 .45	
Range measurement	1.11	
Range noise in tracking radar	18 .43	18 .57
Range prediction, procedure for	2 .61	
Range resolution:		
in automatic detection	8 .21	
effect of CFAR	3 .50	
Range tracking	18.27	
in missile guidance	19 .26	
Ranging noise in AMTI radar	16.28	
Rank detector	8 .19	
RAT-31S	20 .9	
Ratio detector	8 .15	
Rayleigh region	11.5	
Rayleigh target model	2 .22	
Receivers	1.4	
A/D converter in	3 .38	
and amplitude uniformity	3 .31	
automatic noise-level control in	3 .19	
balanced mixer in	3 .10	
CFAR in	3 .46	
clutter map AGC in	3 .18	
coho in	3 .16	
diplex operation of	3 .54	
dynamic range of	3.4	3 .11
and ECCM	9 .18	
filtering in	3 .13	3 .19
front end of	3.7	
general configuration of	3.2	
harmonics in	3.7	
I/Q distortion in	3 .41	
This page has been reformatted by Knovel to prov	vide easier navig	ation.

Index terms		<u>Links</u>
Receivers (Continued)	1.4	
IF limiters in	3 .30	
image-reject mixer in	3 .11	
local oscillators of	3 .11	
logarithmic devices in	3 .25	
matched filter approximations for	3 .21	
mixers in	3 .8	3 .22
noise in, and tracking radar accuracy	18 .50	
noise temperature of	2 .31	
phase detectors in	3 .32	
phase uniformity (Phamp) in	3 .31	
for semiactive missile guidance	19.35	
spurious responses of mixers in	3 .8	3 .22
stalo stability in	3 .15	
STC in	3 .17	
Recording of radar signals	3 .35	
Reflection coefficient	2 .36	
Refractivity	2 .44	
Regulators	4 .41	
Remote sensing with SBR	22 .3	22 .29
Rendezvous radar requirements	22 .3	
Resonance region	11.5	
Retrospective processing	8.33	8 .34
Rotary-tuned magnetron	4 .6	
ROTHR	5 .3	
Rough surface reflection coefficient	2 .38	
S		
S band	1 .14	1 .16
Salisbury screen	11.46	
Sampled-data operation in missile guidance	19 .20	
SAR (see Synthetic aperture radar)		
		T

This page has been reformatted by Knovel to provide easier navigation.

<u>Index terms</u>		<u>Links</u>
SAW delay line	10.3	10 .10
SBR (see Space-based radar)		
SCAMP	18 .19	
Scanning-motion compensation	16 .14	
Scatterometer	12 .18	22.4
CW doppler	12 .22	
FM-CW	12 .24	
SCR-268	20 .2	
SCR-584	20 .3	
Sea clutter:		
and Bragg scatter	13 .29	
composite-surface model of	13 .32	
and contaminants	13 .26	
critical angle in	13 .19	
and currents	13 .27	
and ducting, effect of	13 .25	
empirical behavior of	13 .6	
at HF	13 .19	
at millimeter waves	13 .20	
and rain	13 .23	
sea spikes in	13 .17	13 .34
shadowing and	13 .26	
spectrum of	13 .21	
and surface features	13 .33	
theories of	13 .27	
wedge model of	13 .33	
and wind direction	13 .16	
and wind speed	13 .8	
Sea ice, echoes from	12.44	12 .47
Sea spikes	13 .17	13 .34
Sea state	13 .6	
Sea surface, description of	13.2	

This page has been reformatted by Knovel to provide easier navigation.

<u>Index terms</u>		<u>Links</u>	
Sea sat	22 .3	22 .15	22 .22
Semiactive missile guidance	19.3		
angle tracking in	19 .14		
antennas for	19 .33		
basic seeker for	19 .10		
clutter in	19.5		
doppler frequency in	19.3		
ECM in	19 .30		
evolution of	19 .9		
guidance fundamentals for	19 .7		
interferometer antenna for	19.34		
low-noise frequency reference in	19.37		
multipath and	19 .30		
multiple targets in	19 .29		
performance limitations of	19 .29		
proportional navigation in	19.7		
and pulse doppler	19 .15		
radomes for	19.32		
receivers for	19.35		
reference channel in	19 .21		
retransmission guidance in	19.20		
sampled-data operation in	19.20		
signal processing in	19.37		
subsystems in	19 .31		
system functional operation of	19 .21		
target illumination for	19 .9		
target signal detection in	19.23		
target signal tracking in	19.26		
track-via-missile in	19 .20		
Sensor integration	8.40		
Sequential lobing	18.3		
height finding accuracy with	20 .20		

This page has been reformatted by Knovel to provide easier navigation.

<u>Index terms</u>		<u>Links</u>	
Servosystems, for tracking radar	18.22		
Shadowing and sea clutter	13.26		
Shaping of targets and radar cross section	11.44		
Shift-register generator	10 .19		
Ships, radar cross section of	11 .16	11 .19	
Shuttle cargo weight	22 .10	22 .11	
Shuttle Imaging Radar (SIR)	22 .15	22 .22	
Sidelobe blanking (SLB)	9 .9		
Sidelobe canceler (SLC)	9 .11		
Sidelobe clutter in pulse doppler radar	17.4		
Sidelobes:			
of antennas (see Antennas, sidelobes of)			
in pulse compression	4 .27	10.27	
Sigma zero	12 .1	13 .7	
Signal processing	1.5		
and ECCM	9 .19		
in SAR	21 .17		
in semiactive missile guidance	19.37		
Signal-processing loss	2 .55		
Signal-to-clutter-ratio improvement	15 .11		
Signal-to-noise ratio, minimum detectable	2 .16		
Significant wave height	13.5		
Silicon bipolar transistors	5 .5		
Silicon FETs	5 .10		
Simultaneous lobing	18 .8		
height-finding accuracy of	20 .25		
Sky-wave HF OTH radar	24 .15		
Skylab radiometer-scatterometer	12 .29		
Snow-covered ground, echoes from	12 .42	12 .45	12 .46
Soil moisture	12 .38		

Solar-array power

22.25

<u>Index terms</u>		<u>Links</u>	
Solid-state transmitters:			
advantages of	5 .1		
design examples of	5 .23		
microwave design of	5.12		
for phased arrays	7 .67		
power combining in	8 .23		
system design of	5 .21		
Space-based radar (SBR):			
advantages and disadvantages of	22 .11		
air-traffic control with	22 .30		
altimeter	22 .3		
antennas for	22 .18		
Cosmos 1500	22 .17	22 .18	22 .23
costs of	22 .26	22 .27	
coverage of	22 .12		
GEOS-C	22 .15		
GEOS-3	22.4		
launcher capabilities for	22 .10		
for military systems	22 .31		
on-board processors for	22 .24		
orbit selection for	22 .5		
planetary observation	22 .29		
prime power for	22 .24		
radiation effects and	22 .9		
remote sensing with	22 .3	22 .29	
rendezvous	22 .3	22 .14	22 .26
scatterometer	22.4		
Seasat	22 .3	22 .22	
SAR for	22 .15		
Shuttle Imaging Radar (SIR)	22 .15	22 .22	
thermal effects in	22 .6		
transmit-receive modules for	22 .23		

19.10

Links

22 15

22 1

48

5 22

12.18

14.18

22 22

1.43

19.12

Index terms

Sparking in magnetrons

types of

Spectrometers

Speedgate

STC

Space-based radar (SBR): (Continued)

Spectral emissions of solid-state modules

<u>Index terms</u>		<u>Links</u>
Subarrays (Continued)	7.61	
combining of power sources with	4 .24	
Subclutter visibility	15 .13	
Superresolution	9 .16	
Surface features in sea clutter	13 .33	
Surface reflections and height finding accuracy	20 .32	
Surveillance radar:		
automatic tracking with	8.23	
and ECCM	9.23	
Swerling target models	2 .21	8 .17
and diplex operation	3 .54	
in pulse doppler radar	17.38	
Synchronous detector	3 .32	
Synthetic aperture radar (SAR):		
ambiguities in	21 .14	
and ambiguity function	21 .8	
antenna in	21 .18	
block diagram of	21 .7	
digital processing in	21 .18	
focused	21 .6	
inverse (ISAR)	21 .21	
motion compensation in	21 .20	
multiple beams in	21 .21	
optical processing in	21 .18	
phase errors in	21 .17	
principle of	21 .1	
and projection-slice theorem	21 .22	
radar equation for	21 .16	
recording in	21 .19	
resolution of	21 .3	
and ambiguity function in	21 .11	

<u>Index terms</u>		<u>Links</u>
Seasat	22 .15	
signal processing in	21 .17	
signal-to-noise ratio in	21 .15	
spotlight mode	21 .21	
squint mode	21 .20	
target motion, effect of	21 .21	
three-dimensional spectrum in	21 .21	
unfocused	21 .5	
System noise temperature	2 .26	
T		
TACCAR	15 .61	
in AMTI	16.3	16.5
Target illumination in missile guidance	19 .9	
Target models (Swerling cases)	2 .21	
Target noise	18 .34	
Target resolution in automatic detection	8 .21	
Target suppression in CFAR	8 .17	
Taylor coefficients	10.33	
Taylor weighting in pulse compression	10 .30	
Terrain-bounce ECM	9.27	
Thinned arrays	7.26	
3D radar definition of	20 .6	
height finding in	20 .6	
Time-frequency-coded waveforms	10.26	
Time gating in pulse doppler radar	17 .19	
Tornado detection	23 .19	
Track initiation	8 .32	
Track via missile	19 .20	
Track while scan	8 .23	

<u>Index terms</u>		<u>Links</u>
Tracking:		
Automatic, in surveillance radar	8 .23	
with multiple radars	8 .40	
in pulse doppler radar	17.25	
Tracking filters	8.28	
Tracking radar:		
acquisition of targets with	18.26	
AGC in:		
and angle noise	18.42	
for monopulse	18 .16	
amplitude-comparison monopulse	18 .9	
amplitude noise in	18.34	
angle noise in	18.37	18.57
conical scan	18.3	
Conopulse	18 .21	
crosstalk in	18 .48	
digital range tracker for	18 .30	
doppler scintillation in	18 .45	
early-late gate in	18.27	
and ECCM	9.25	
errors in:		
external sources of	18.34	
internal sources of	18 .50	
reduction of	18.54	
summary of	18.53	
glint in	18.37	18 .57
monopulse	18 .8	
(See also Monopulse tracking radar)		
multipath in	18 .46	18.54
nth-time-around tracking	18 .30	
on-axis	18.33	
range noise in	18.43	18 .57

<u>Index terms</u>		<u>Links</u>
Tracking radar: (Continued)		
range tracking in	18.27	
receiver noise in	18 .50	
servosystems in	18.22	
TRAKX	18.32	
tropospheric propagation effects in	18 .49	
TRAKX	18.32	
Transmission-line noise temperature	2 .30	
Transmit-receive modules:		
for SBR	22 .23	
(See also Solid-state transmitters)		
Transmitters	1.3	4 .1
for active seekers	19.38	
amplifier chain	4 .9	
amplifier tubes for	4 .12	
combining of devices in	4.22	
crossed-field amplifiers (CFAs) in	4 .12	
crowbars for	4 .40	
and ECCM	9 .16	
for HF radar	24 .4	
high-voltage power supplies for	4.25	4 .41
klystron	4 .14	4 .19
magnetron	4.5	
modulator effects in	4.25	
modulators for	4.29	
and MT1 radar	4.25	4 .30
noise degeneration in	4.30	
oscillator versus amplifier for	4 .9	
power capabilities of	4 .21	
and pulse compression	4 .27	
regulators for	4 .41	4 .42
solid-state (see solid-state transmitters)		

<u>Index terms</u>		<u>Links</u>
Transmitters (Continued)	1.3	4 .1
spectrum control of	4 .31	
stability requirements for	4.25	
traveling-wave tube	4 .15	4 .19
tube selection for	4 .17	
Twystron	4 .17	
Traveling-wave tubes (TWT)	4 .15	4 .19
Trilateration radar	24 .1	
Tropospheric absorption loss	2 .47	
Tropospheric propagation, and tracking radar	18 .49	
Two-pole filter	8 .8	
Twystron	4 .17	
Type II servosystem	18.25	
\mathbf{U}		
UHF radar	1.14	
Ultrasonic simulation of electromagnetic waves	12 .26	
Unfocused synthetic aperture radar	21 .5	
Universal Marcum curve	17 .37	
\mathbf{V}		
V-beam height finder	20 .6	
Vector monopulse	20 .26	
Vegetation, backscatter from	12 .39	12 .41
Velocity azimuth display (VAD)	23 .22	
Velocity-gate pull-off	9.26	
VHP radar	1 .14	
Virga	23 .8	
Visibility factor	15.4	
Visual detection	2 .24	

<u>Index terms</u>		<u>Links</u>
Voltage-controlled oscillator:		
in pulse compression	10 .15	
in TACCAR	16.5	
\mathbf{W}		
Wave spectrum of the sea	13 .3	
Weather attenuation	23 .5	
Weather radar (see Meteorological radar)		
Wedge, image of	11.42	
Wedge model of sea clutter	13 .33	
Weighting in pulse compression	10.29	
Wind, measurement of	23 .22	
Wind direction, effect of, on sea clutter	13 .16	
Wind profiler	23 .27	
Wind shear (microburst)	23 .20	
Wind speed, effect of, on sea clutter	13.8	
Wire, radar cross section of	11.6	11.8
Wooden-round concept in missile testing	19 .40	