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21.1 BASIC PRINCIPLES AND EARL Y HISTORY

For airborne ground-mapping radar there has been continuous pressure and de-
sire to achieve finer resolution. Initially, this finer resolution was achieved by the
application of "brute-force" techniques. Conventional radar systems of this type
were designed to achieve range resolution by the radiation of a short pulse and
azimuth resolution by the radiation of a narrow beam.

The range resolution problem and some of the pulse compression techniques
are discussed in Chap. 10. There it is shown that techniques are available for
achieving a resolution significantly finer than that corresponding to the pulse
width, provided a signal of sufficient bandwidth is transmitted. Since pulse com-
pression is adequately treated in that chapter, the present chapter will discuss
pulse compression techniques only for cases in which the pulse compression
technique is intimately involved with synthetic aperture techniques. This is par-
ticularly true for configurations that perform both pulse compression and azimuth
compression simultaneously rather than with techniques that perform range com-
pression and azimuth compression sequentially.

The basic technology discussed in this chapter is the exploitation of synthetic
aperture techniques for improving the azimuth resolution of a mapping radar to a
value significantly finer than that achievable by making use of the radiated
beam width.

Synthetic aperture radar (SAR) is based on the generation of an effective long
antenna by signal-processing means rather than by the actual use of a long phys-
ical antenna. In fact, only a single, relatively small, physical antenna is used in
most cases.

In considering a synthetic aperture, one makes reference to the characteristics
of a long linear array of physical antennas. In that case, a number of radiating
elements are constructed and placed at appropriate points along a straight line. In
the use of such a physical linear array, signals are fed simultaneously to each of
the elements of the array. Similarly, when the array is used as a receiver, the
elements receive signals simultaneously; in both the transmitting and the receiv-
ing modes, waveguide or other transmission-line interconnections are used, and
interference phenomena are exploited to get an effective radiation pattern.

The radiation pattern of a linear array is the product of two quantities if the



radiating elements are identical. The radiation pattern of the array is the radiation
pattern of a single element multiplied by an array factor. The array factor has
significantly sharper lobes (narrower beamwidths) than the radiation patterns of
the elements of the array. The half-power beamwidth (3, in radians, of the array
factor of such an antenna is given by

P = I (21.1)

In this expression, L is the length of the physical array, and X is the wavelength.
In the synthetic antenna* case, only a single radiating element is used in most

instances. This antenna is translated to take up sequential positions along a line.
At each of these positions a signal is transmitted, and the radar signals received in
response to that transmission are placed in storage. It is essential that the storage
be such that both amplitude and phase of received signals are preserved.

After the radiating element has traversed a distance Leff, the signals in storage
resemble strongly the signals that would have been received by the elements of
an actual linear array. Consequently, if the signals in storage are subjected to the
same operations as those used in forming a physical linear array, one can get the
effect of a long antenna aperture. This idea has resulted in the use of the term
synthetic aperture to designate this technique.

In the case of an airborne ground-mapping radar system, the antenna usually
is mounted to be side-looking, and the motion of the aircraft carries the radiating
element to each of the positions of the array. These array positions are the loca-
tion of the physical antenna at the times of transmission and reception of the ra-
dar signals.

The designer of a synthetic aperture radar has available a number of degrees
of freedom that are not available to the designer of a physical linear array. These
degrees of freedom derive from the fact that the signals in storage can be selected
by range and that, if desired, a different operation can be performed on the sig-
nals at different ranges. One important operation of this type is that of focusing.

A physical linear array can be focused to a specific range. There will then be
a depth of focus surrounding this range. However, most physical linear arrays are
unfocused. This is sometimes stated by saying that the antenna is "focused at
infinity." In a synthetic aperture radar, however, it is possible to focus each
range separately by the proper adjustment of the phases of the received signals
before the summation; this results in the effective synthetic aperture. Further-
more, if desired, a different weighting can be applied to each range, although usu-
ally the same type of weighting is used at all ranges.

There is another important difference between physical linear arrays and syn-
thetic linear arrays. This difference results in the synthetic aperture having a res-
olution finer by a factor of 2 than that corresponding to a real linear array of the
same length. Qualitatively, the following discussion indicates the physics result-
ing in this factor of 2. In a more general analysis, the factor 2 arises naturally.

In a physical linear array, the transmission of the signals results in an illu-
mination of the target area. The angle selectivity of the linear array is pro-
vided only during the reception process. During this process, the differences
in phase received by each element of the linear array give the antenna pattern.
In the synthetic antenna radar, on the other hand, a single element radiates
and receives signals. Consequently, the round-trip phase shift is effective in
forming the effective radiation pattern. This relationship is written as

* The terms synthetic antenna and synthetic aperture are used interchangeably in this chapter.



Peff = 5T- (2L2)
^Leff

Here peff is the effective half-power beamwidth of the synthetic aperture, and Leff
is the length of the synthetic aperture.

A more detailed derivation of the resolution capability of a synthetic aperture
radar will be given later in this chapter. The following derivation is that initially
made by the author and his colleagues in the early days of synthetic aperture ra-
dar.

Let D represent the horizontal aperture of the physical antenna carried by an
airborne ground-mapping radar. The width of the horizontal beam at range R
gives the maximum value for the length of synthetic aperture that can be used at
that range. Since the beamwidth of such an antenna is given by the ratio of the
wavelength X to its horizontal aperture D, the maximum length of this synthetic
antenna aperture is given by

La = f (21.3)

The linear resolution in azimuth 8a is the product of the effective beamwidth
given by Eq. (21.2) and the range R:

8a = Peff* (21.4)

If Eqs. (21.2) and (21.3) are combined with Eq. (21.4), one obtains

» _ *• o _ M D - D ot ^
8«~ 2Z^*-T J^ "I (2L5)

It will be noted that Eq. (21.5) indicates an azimuth linear resolution independent
of both range and wavelength. Moreover, the result indicates that finer resolution
is achievable with smaller rather than larger physical apertures. This spectacular
result formed much of the motivation of the research in synthetic antenna radar.

The author was first exposed to the idea of a synthetic antenna radar in 1953,
during a summer study which launched a program known as Project Michigan.
During that summer, the ideas relating to synthetic antennas were presented by
Dr. C. W. Sherwin,1 then of the University of Illinois, Dr. Walt Hausz of the
General Electric Company, and J. Koehler, at that time with Philco Corporation.
Subsequently, it came to the author's attention that Carl Wiley and the Goodyear
Aircraft Company had already undertaken some work and had made substantial
progress in the synthetic-antenna area.

The Pioneer Award of the IEEE Aerospace and Electronic Systems Society
was given to Carl Wiley in 1985 for his work in synthetic aperture radar. His re-
marks from that presentation are given in Ref. 2 and relate some of the early his-
tory of SAR.

Most of the early workers considered an unfocused synthetic antenna. How-
ever, Dr. Sherwin indicated that finer resolution should be achievable by using
focusing because this technique removed what would otherwise be a restriction
on the maximum length of synthetic antenna that could be used. The author and



his colleagues at the University of Michigan undertook development of the fo-
cusing concept suggested by Dr. Sherwin.

27.2 FACTORS AFFECTING RESOLUTION OF A
RADAR SYSTEM

In the following paragraphs a brief comparison of the conventional antenna, the
unfocused synthetic antenna, and the focused antenna is given.3'4 The language
of synthetic apertures is used, and a comparison of the resolution capability for
three cases is given. A more sophisticated derivation of simultaneous resolution
in range and azimuth will be given later in this chapter.

Three cases are compared for their azimuth resolution capability: (1) the con-
ventional technique, in which azimuth resolution depends upon the width of the
radiated beam; (2) the unfocused synthetic antenna technique, in which the syn-
thetic antenna length is made as long as the unfocused technique permits; and (3)
the focused synthetic antenna technique, in which the synthetic antenna length is
made equal to the linear width of the radiated beam at each range.

The linear azimuth resolution for the conventional case is given by

\ D
Resolutionconv = — (21.6)

For the unfocused case, the resolution is

Resolutionunf = 1X2Vx/? (21.7)

whereas for the focused case, the resolution is

Resolutionfoc = — (21.8)

where X = wavelength of radar signal transmitted
D = horizontal aperture of antenna
R = radar range

Figure 21.1 is a plot of the resolution for each of these cases as a function of
radar range. This plot is for an antenna aperture of 5 ft and a wavelength of 0.1 ft.

Conventional Technique. The conventional technique for achieving azimuth
resolution has been that of radiating a narrow beam. In this case the resolution
of a target depends upon whether the target is included within the half-power
points of the radiated beam, although some techniques exist for resolving
targets somewhat less than a beamwidth apart.

The computation of the linear azimuth resolution for the conventional case is
well known. The appropriate expression is obtained by noting that the width of
the radiated beam, in radians, is given by the ratio XlD whereas the linear width
of the beam at range R is the product of this beamwidth and range. These con-
siderations lead to the result already written as Eq. (21.6).

A consideration from antenna theory is that Eq. (21.6) applies only to the far-



RANGE (nmi)
BIG. 21.1 Azimuth resolution for three cases:
curve a, conventional; curve b, unfocused;
curve c, focused.

field pattern of an antenna. The beginning of the far field occurs at a distance
*min for which

*min ~ Y (2L9)

It will be noted by substitution of Eq. (21.9) that the finest resolution achiev-
able by the conventional technique is given by

Minimum conventional resolution = D (21.10)

The Unfocused Synthetic Aperture. The simpler of the synthetic antenna
techniques is that which generates an unfocused synthetic aperture. In this
case, the coherent signals received at the synthetic array points are integrated,
with no attempt made to shift the phases
of the signals before integration. This
lack of phase adjustment imposes a max-
imum upon the synthetic antenna length
that can be generated. This maximum
synthetic antenna length occurs at a
given range when the round-trip distance
from a radar target to the center of the
synthetic array differs by X/4 from the
round-trip distance between the radar
target and the extremities of the
synthetic aperture array.

The pertinent geometry is shown in
Fig. 21.2. In this figure, R0 represents the
range from a radar target to the center of the array, and Leff represents the max-
imum synthetic antenna length such that the distance from the target to the ex-
tremities of the synthetic aperture does not exceed R0 + X/8.

It is evident from this geometry that

(*+!)2-¥+*2 (2U1)

FIG. 21.2 Geometry for an unfocused
synthetic antenna.
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If this expression is solved for Leff, subject to the assumption that X/16 is small
compared with R09 the result is

Leff = VR^ (21.12)

Combination of Eqs. (21.2) and (21.12) gives

Peff = ijJ|- rad (21.13)
2 \]KQ

Multiplying this beam width by range results in the resolution given by Eq. (21.7).
It will be noted that for the unfocused case the transverse linear resolution is

independent of the antenna aperture size, fineness of resolution is increased by
the use of shorter wavelengths, resolution varies as the square root of X, and the
resolution deteriorates as the square root of range. A plot of Eq. (21.7) is given in
Fig. 21.1.

The Focused Case. An expression for the resolution achievable in the
focused case has been given as Eq. (21.8). It is significant that the azimuth
resolution achievable for this case depends only upon the physical antenna
aperture and that, in contradistinction to the conventional case, fine resolution
requires the use of small rather than large antennas. Also significant is the fact
that the achievable resolution for a given antenna size is independent both of
the range and of the wavelength used. A graph of Eq. (21.8) is also shown in
Fig. 21.1.

In order to achieve the resolution indicated by Eq. (21.8), the synthetic ap-
erture length required is

Lef[=™ (21-14)

The considerations used in arriving at Eq. (21.12) indicated that, unless additional
processing were applied to the signals, antenna lengths such as those implied by
Eq. (21.14) could not be achieved. The processing required is an adjustment of
the phases of the signals received at each point of the synthetic antenna, which
makes these signals of equal phase (cophase) for a given target. If this is done,
the restrictions which limited the maximum antenna length to that given by Eq.
(21.12) are no longer pertinent and the new limitation on the length of the syn-
thetic antenna achievable becomes simply the linear width of the radiated beam
at the range of the target.

In some cases, a resolution coarser than DII is sufficient. Then a fraction y of
the maximum focused synthetic antenna length can be used. For this case

^eff = ̂  (21-15)

and the achievable resolution is

Resolutionfoc = — (21.16)



For situations in which the synthetic antenna length given by Eq. (21.15) is
less than or equal to the synthetic antenna length for the unfocused case as given
by Eq. (21.12), only a limited improvement in resolution is achievable for the fo-
cused case. However, if a resolution finer than that given by Eq. (21.7) is desired,
focusing must be used. Focusing removes the restriction on synthetic aperture
length that would otherwise apply.

21.3 RADARSYSTEMPRELIMINARIES

Whether or not synthetic aperture generation is used, a number of components
are required for a radar system. The use of a synthetic antenna and/or pulse com-
pression places additional requirements on some of these components, especially
with respect to coherence and stability.

It is the purpose of this section to present a block diagram of the portions of
the radar system that precede the signal processor. A block diagram and several
variants are described. The major variant is for the purpose of describing the
transmitter-receiver portions of a radar system for the cases of synthetic antenna
generation alone as compared with the case of synthetic antenna generation com-
bined with pulse compression. The signal-processing operations will be discussed
later.

The essential elements of a radar system useful in a synthetic aperture situa-
tion are shown in Fig. 21.3. The components that determine the radiated
waveform are shown within the dotted lines in the upper left-hand corner of the
diagram. This equipment consists of two stable oscillators. One of them is a local

FIG. 21.3 Block diagram of a coherent radar system.
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oscillator (LO) at radian frequency o>2. The outputs of these oscillators are fed
into mixer 1. In this mixer, a multiplicity of sum and difference frequencies is
generated, and either the sum frequencies or the difference frequencies are se-
lected and fed to the power amplifier.

If synthetic antenna generation without pulse compression is to be accom-
plished, the dotted component labeled "frequency-deviable oscillator" is not
used, and the local oscillator is fed directly into mixer 1.

If pulse compression is to be combined with synthetic antenna generation, a
frequency-deviable oscillator (FDO) is used for obtaining the desired waveform.
In this case, the local oscillator is used to lock in the FDO. A ramp voltage is
used to linearly frequency-modulate the FDO. This linearly frequency-modulated
signal is then fed into mixer 1, instead of the LO signal, for the case of pulse
compression. Waveforms other than linear frequency modulation may be used
for pulse compression. In Fig. 21.3 the output of the video amplifier is fed to a
recorder if optical processing is to be performed and/or to an electronic proces-
sor.

27.4 SIGNAL-PROCESSING THEORY

The theory of synthetic antenna generation combined with pulse compression is
carried out below to show the information theoretic considerations involved and
to indicate the operations necessary for achieving both azimuth synthetic antenna
generation and pulse compression. A combined range-azimuth resolution func-
tion is derived. Following this treatment, an analysis of the signal-to-noise-ratio
characteristics of a synthetic antenna compression radar are analyzed.

Detailed Resolution Analysis. The analysis will be carried out in terms of an
ambiguity function whose properties indicate both the azimuth and the range
resolution of the system. In the analysis, some conditions are stated for which
the terms affecting range resolution can be factored from the elements affecting
azimuth resolution, so that the resulting ambiguity function can be written as
the product of two factors, one for range and one for azimuth.

Role of the Generalized Ambiguity Function. In this subsection, a definition
of a generalized ambiguity function will be given, and its role in determining the
resolution of a system will be interpreted.

To determine the generalized ambiguity function for a radar system, let a
waveform f(f) be radiated. We consider the operations performed upon the re-
ceived signals with the objective of determining the radar reflectivity of the ter-
rain being mapped. The function f(f) may assume a variety of forms and may be
a succession of short signals. If the quantity p(x,y,z) represents the reflectivity of
the terrain being mapped, the signal received by a radar system can be described
by

*W = f f ff>(x,y,z)f\t - —} dx dy dz (21.17)JJJ L CJ

The integration extends over the illuminated patch, and R is the range between a
point (x,y,z) on the ground and the radar position (v/,0,/z). This equation shows
that the received signal is the superposition of a large number of reflections



within the illuminated pattern of the antenna and within the range gate which ar-
rive simultaneously at the radar antenna.

The radar design problem is one of designing an operation on s(t) to recover
the reflectivity function p(x,y,z). One such operation consists of passing the sig-
nals s(t) through a matched filter. The operation of subjecting s(t) to this matched
filter is given by

/
r 2/?'i

Hr--Uf)A (21.18)
L c J

In this equation, the asterisk indicates complex conjugation, and R' indicates the
range from the radar antenna to the specific point (x',y',z') at which the
reflectivity is to be evaluated.

Substitution of Eq. (21.17) into Eq. (21.18) gives a fourfold integral for the out-
put, namely,

eQ = J JJJp(*0^)/[' ~ y] f\t - ̂ ] dt dx dy dz (21.19)

If the order of integration can be inverted so that the integration with respect
to t is performed first, one can define a quantity x(x,y,z;x',y'tz'). This quantity is
the generalized ambiguity function, given by

/
r 9/?i r 9T?'!

f i t \J*\t-—\dt (21.20)
L c J L c J

In terms of the generalized ambiguity function defined by Eq. (21.17), Eq. (21.19)
can be rewritten as

e0 = JJJ X(xy,z;x',y',z')p(x9y,z) dx dy dz (21.21)

Equation (21.21) shows that the ambiguity function can be considered as a
weighting function on p(x,y,z). The output of the radar system, therefore, is the
weighted average of p over a domain determined by the limits of integration. If
the ambiguity function is localized at some point and is essentially zero at all
other points, the output will be a good representation of the radar reflectivity at
that point. Otherwise, the estimate of the reflectivity at a given point will be the
weighted average given by Eq. (21.21).

Although no use will be made in this section of considerations determined by
the limits of integration, it should be pointed out that Eq. (21.21) states that the
output estimate of reflectivity in the radar system is a weighting of the reflectivity
p by the product of the ambiguity function and the illumination function, whereby
illumination function is meant the function that determines the distribution of sig-
nal energy over the plane. Ordinarily, the antenna illumination pattern, the pulse
length, and the terms appearing in the radar equation determine this illumination
function. In some cases, the ambiguity function x has peaks at more than one
point. If the illumination function excludes all but one of these peaks, an unam-
biguous system results.

Factorization of the Ambiguity Function. Let it be assumed that f(f) can be
written



M = g(t)e^ (21.22)

In this equation, g(t) is considered a complex function having both magnitude and
phase, whereas O)0 represents a carrier frequency. If f(t) with the form given by
Eq. (21.22) is used in Eq. (21.20), one obtains for the ambiguity function the ex-
pression

X = fg\* - —1 **[> - —I *'WWc - 2R>/C) dt (21.23)J L c J L c J

Let J(t) consist of a sequence of transmissions. It is assumed that successive
transmissions may be alike or that they may be different. Thus fit) will have the
characteristics of being nonzero for a sequence of time intervals and of being zero
otherwise. Further, let it be assumed that the exponential term in Eq. (21.23) var-
ies slowly during each of these transmissions. This is equivalent to a statement
that the electrical path length between a target and the radar changes by a small
amount during each transmission. If this assumption is valid, the exponential
term in Eq. (21.23) can be considered a constant during a given transmission, al-
though it will vary between transmissions.

The integral that is the coefficient of the exponential term in Eq. (21.23) has
the form of an autocorrelation function of g with itself. This autocorrelation func-
tion for g is given by Eq. (21.24). It will be noted that the autocorrelation function
of g is a function of the difference in range R-R'. In Eq. (21.24) the integral is
carried out over the times that g(t - 2RIc) overlaps g*(t - 2R'/c) for a given
transmission.

**-/•(-3 4-fl-«4"-T] <-<>

If the notation given by Eq. (21.24) is used, one obtains

X = 24> J— - —I e-**™ ~ 2^ (21.25)**L C C J

Examination of Eq. (21.25) shows that if <|> ,̂ the autocorrelation function for g,
is the same function for each member of the sequence of transmissions, then this
element can be factored out and written outside the summation term of Eq.
(21.25). The expression after this common term has been factored out is

X = 4>J^ - ̂ f] Ze-^2*1' ~ *'V (21.26)

The summation term in Eq. (21.26) gives the azimuth resolution of the system,
whereas the term $g? gives the range resolution. It is evident from Eq. (21.26)
that the autocorrelation function of g rather than g itself determines the range
resolution of the system.

A variety of waveforms have been used to achieve range resolution. Among
them the two most important are those in which g(t) is a short pulse and those in
which g(t) is a linearly frequency-modulated short pulse (chirped signal). It is, of



course, evident that any other waveform having a desirable autocorrelation func-
tion is equally possible for g(t).

The form of g(t) to be analyzed is that of the linearly frequency-modulated
case.

Azimuth Resolution Factor of the Ambiguity Function. The azimuth resolu-
tion capability of the system can be determined from an evaluation of the sum
term written as the factor in Eq. (21.26). In this sum, R represents the range from
the radar to an arbitrary point on the terrain being mapped, whereas R' repre-
sents the range to a specific point for which the reflectivity is to be estimated.
The geometry appropriate to the synthetic antenna case is shown in Fig. 21.4. In
this diagram, it is assumed that the aircraft carries a side-looking antenna and
flies at height h and with velocity v along the jc axis so that the aircraft location is
given by

JC = Vt

Consider two points being mapped having coordinates (0,;y(),0) and (jt',y(),0). R() is
defined by

^o = VV + h2 (21.27)

and R and R' can be written, respectively, as

2
R = VV + x2 ~ /C0 + JL- (21.28)

2/C0

V '—i (x - x')2

R(
2 + (jc- x')2 « R() + .p (21.29)

2/C0

The second expression for Eqs. (21.28) and (21.29) is an approximation that is
valid whenever the inequalities x«R(}, (x - x') « /?() are satisfied. If the ap-
proximate forms for R-R' as given by the approximate expressions in Eqs.

FIG. 21.4 Geometry for Eqs. (21.27) and (21.28).
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(21.28) and (21.29) are used to evaluate the sum appearing in Eq. (21.26), one
obtains

<£e-i<w(2R/c - 2R1Ic] _ ££-/(2a>o/c)(2xjt' - x'2)/2RQ (21.30)

Thus far, the summation index has not been defined. To proceed further, it is
necessary to indicate the summation index and its bounds. Let it be assumed that
the transmissions radiated are a sequence of pulses with time intervals between
pulses that are multiples of T. Then the variable x can be given as an integral
multiple of the distance vT moved between successive transmissions. This rela-
tionship is

jc = nvT (21.31)

IfEq. (21.31) is substituted into Eq. (21.30), one obtains

, NU
^ = £/(2<oo/c)*'72/?o ̂  e-i4<n(x'/KRQ)nvT (21.32)

-NI2

In writing Eq. (21.32), the summation is carried over N + 1 terms. The synthetic
antenna length implied by these limits is given by L — NvT.

Inasmuch as the summation terms in Eq. (21.32) are those corresponding to a
geometric progression, the sum term can be immediately evaluated. The result is

^ ,. ,2/™ sin [(N + \)4irx'vTl2\RdJ = ,,1(2(00/C)A:' /2RQ
 LV i Tl O\ -l-n

Z sin [4™t'v772X*0]

The right-hand side of Eq. (21.33) gives the factor of the generalized ambiguity
function that is responsible for the azimuth resolution. It will be noted that there
are a phase term given by the exponential and a magnitude term given by the
remaining terms in Eq. (21.33). The specific form of Eq. (21.33) is a consequence
of the equal weighting of the signals. A weighting function can be used to shape
the sidelobes in direct analogy with the use of such a technique in real antenna
design.

Range Resolution Factor of the Ambiguity Function. This subsection con-
siders the factor in the generalized ambiguity function, Eq. (21.25), that is respon-
sible for range resolution. This factor, <j>^,, has been defined by Eq. (21.24). A
specific form for g(f) will be assumed, and an evaluation of $gg will be made for
this specific waveform. The function g(t) to be analyzed is that in which each
radiation consists of a short, linearly frequency-modulated signal. An expression
for g(t) in this case is

*(/) = */a'2 (21.34)

The use of Eq. (21.34) in Eq. (21.24) results in

T/2

^ = eia[(2R/c)2 - (2R1Ic]2] f ^-ia[(4R/c)/-(4J?7c)/]rfr (21.35)

-T/2



4> = e<«[(2*/02 - (2R'/c)2] T sin {gT[(2fl/c) - (2R'lc)]}
oLT[(2R/c - 2R9Ic)] U '

Equation (21.36) gives the range resolution factor of the ambiguity function for a
transmitted waveform of the type expressed by Eq. (21.34). It will be noted that
this term consists of a phase term and an amplitude term.

Inasmuch as both the azimuth resolution factor and the range resolution factor
have been evaluated, the generalized ambiguity function can be written:

Y = io[(2K/c)2 - (2R1Ic)2] T SJn qT[(2fl/c) - (2KVc)] /(2coo/c)(;c'2/2/?o)
X OLT(IRIc - 2R1Ic)

sin [(N + l)(2ir*'VT)I(XR0]
X sin [2irx'vT/\Rd (21-37)

In interpreting Eq. (21.37), it should be noted that there are phase terms and mag-
nitude terms. One of the magnitude terms corresponds to the range resolution
capability of the system; the other, to azimuth resolution. Quantitative expres-
sions for the resolution in each of these coordinates will be obtained below.

The resolution terms in Eqs. (21.33), (21.36), (21.37) are of the form

sin NzI'sin z (21.38)

with

z = 2<nx'vTI\RQ (21.39)

for the azimuth resolution case, and

sinzlz (21.40)

with

z = cn[2Rlc - 2R1Ic] (21.41)

for the range resolution case.
If the value

L = (N + I)VT (21.42)

is combined with Eq. (21.39) and one recognizes that

OLT = 2TfB (21.43)

where B is the chirp signal bandwidth, one can show that the azimuth resolution
8a and the range resolution 8r are given by

8fl = (1.4XK0V(IrL) (21.44)



and

5r = (1.4c)/(2irfl) (21.45)

Ambiguities. It is the objective of this subsection to make some observations
regarding the possibility of multiple peaks (ambiguities) in the ambiguity function
as given by Eq. (21.37) and its effect on system performance as given by Eq.
(21.19).

The final term on the right-hand side of Eq. (21.37) is of the form

Si" [(N + M (21.46)
sin q

where the quantity q is defined by

2*nx'vT ^1 _q = "̂ T (2L47)

The azimuth resolution factor, therefore, has a peak whenever the quantity q
takes on a value equal to an integral multiple of TT rad. Thus the system is poten-
tially ambiguous for values of x' that are solutions of

2TTJcVr ( .Q.
——— = mir (21.48)

\KQ

Actually, it is more meaningful to solve for the ratio x'/R0. The angle v gives di-
rections from the broadside at which angle ambiguities are potentially possible.
This relationship is given as

--5-5Sf-^

In the last form of this equation, the numerator and the denominator have been
multiplied by D, the horizontal aperture of the antenna, to express the result in
terms of the radiated beam width p = KlD.

Thus, the possibility of azimuth ambiguities arises as a natural consequence of
the signals radiated and of the processing method. Ordinarily, these potential am-
biguities in azimuth are suppressed by the illumination factor. The illumination
pattern £ is chosen so that the values of p corresponding to more than one value
of m are not illuminated.

Possibilities also exist for ambiguities in range. The analysis carried out to the
point of Eq. (21.37) was not sufficiently general to predict ambiguities in range.
However, if reference is made to Eq. (21.24), it is evident that the autocorrelation
function ifygg will be periodic if g(t) is periodic. Thus range ambiguities can also
occur. In particular, range ambiguities will occur for ranges having a difference
given by

A/? = Y (21.50)

where T is the interpulse period.
To date, systems have been built which have avoided ambiguities by virtue of



illuminating only the part of the ambiguity diagram that excludes all but one ma-
jor peak. This technique has sometimes been referred to as ambiguity avoidance.

For some sets of parameters, ambiguities cannot be avoided by using a radar
with a single radiated beam. The use of multiple beams solves this problem. This
topic is discussed in Sec. 21.5.

Signal-to-Noise-Ratio Considerations. It is the purpose of this subsection to
derive expressions for signal-to-noise (SIN) ratio for radars in which pulse
compression and synthetic antenna techniques are used. The signal-to-noise
ratio for a radar system as a result of the reception of a single pulse is given by
the well-known radar equation

S _ PtGtArv

K ~ (4TT)2^J0BFn
 (2L51)

In a pulse compression radar, signal-to-noise improvement occurs in the ratio of
the uncompressed pulse length T, to compressed pulse length T0.

In a radar that achieves its azimuth resolution by the generation of a synthetic
antenna, there is an additional signal-to-noise improvement factor due to the in-
tegration of a number of pulses. The number of pulses integrated is equal to the
product of the pulse repetition frequency (PRF) and the time necessary to gener-
ate the synthetic antenna. In turn, this time is equal to the ratio of synthetic length
L to aircraft speed v.

An expression in which the product of both factors has been written is

iy. "P"DT7 T

Improvement factor = — (21.52)
T0 V

The length of synthetic antenna required to achieve azimuth resolution 8az at
range R and wavelength X is given by

L = ̂ - (21.53)
^&az

The substitution of Eq. (21.53) into Eq. (21.52) gives for the improvement factor

[ 7."I pj?p i?x
_ (21.54)
ToJ 2voaz

The signal-to-noise ratio including the improvement factor is obtained by mul-
tiplying together the expressions given by Eqs. (21.51) and (21.54). The result of
this multiplication is

S_ P,G,Ara TjPRFRX

N (4Tr)2^r0BFnT0 2v8az



Although Eq. (21.55) contains the desired information, it is useful to modify the
term somewhat by expressing the antenna gain in terms of the effective area of its
aperture and of the wavelength. This expression is written

4irAr
G1 = -- (21.56)

X2

It is also desirable to collect together three terms in the numerator of Eq. (21.55),
namely, Pt, the peak transmitted power; T,, the uncompressed pulse length; and
the PRF. The product of these three factors gives the average power Pav. This
relationship is written

Pa, = /Vr,PRF (21.57)

In the design of a radar system, the bandwidth B is chosen to be the reciprocal of
T0. Hence the product of the bandwidth and the compressed pulse width is ap-
proximately equal to unity. This relationship is written

#TO ~ 1 (21.58)

Finally, it is useful to express the radar cross section a in terms of the azimuth
and range resolution, 8az and 8r, as well as in terms of the reflectivity of the ter-
rain, p. The radar cross section is equal to the reflectivity of the terrain multiplied
by the projected area. This projection accounts for the term sin \\i. The expression
for the radar cross section in terms of these parameters is given by

a = p8r5az sin i|/ (21.59)

Substitution of Eqs. (21.56) to (21.59) for the corresponding quantities in Eq.
(21.55) gives

S P,a/PRF4irA2pSr5az (sin v|>) RX
__ = _ ___ (21.60)
N (4^)2/?4X2/:70F/7№o)2v5az

In writing Eq. (21.60), no cancellation of terms has been made. Canceling terms
that appear in both the numerator and the denominator results in

5 = Aw Vp8r sin i|j

N *v kToFnR\ v

This is the desired result.
Equation (21.61) does not take into account factors concerned with ambiguity

avoidance. The inclusion of such effects is given in Ref. 5.
Equation (21.61) shows that the signal-to-noise ratio at the output of a radar

that has used pulse compression and has generated a synthetic antenna has the
following properties different from conventional radar:

1. The signal-to-noise ratio is proportional to the size of the range resolution
element and is independent of the size of the azimuth resolution element.

2. The signal-to-noise ratio is inversely proportional to the third power of
range.



3. The signal-to-noise ratio is inversely proportional to the wavelength.
4. The signal-to-noise ratio is inversely proportional to the speed of the air-

craft.

Effect of Phase Errors. In actual equipment, phase errors arise from a
number of sources. Some of the instabilities arise in oscillators and other
electrical components of the radar, but other sources of phase error are
inhomogeneities in the atmosphere or the result of uncompensated deviation of
the aircraft from linear unaccelerated motion. A number of modifications of the
synthetic antenna pattern result from such uncompensated phase errors. These
modifications include beam canting, beam spreading, peak gain reduction, and
redistribution of the ratio of energy in the main lobe to that in the sidelobes.
An analytic formulation and Monte Carlo computer simulation of the effects of
phase errors for normally distributed random phase errors and for three cross-
correlation functions have been given by Greene and Moller.6

Signal Processing. The preceding subsections have discussed a number of
aspects of radar signal processing. Also discussed has been the radar system up
to the point of signal processing. As part of that analysis, the waveforms of
signals at a number of points in the radar system have been described. It is the
purpose of this subsection to discuss a number of aspects of signal processing
that are common to all mechanizations.

Many fine-resolution radar systems employ both pulse compression and syn-
thetic antenna generation.

Theoretic Aspects of Synthetic Aperture Generation. In generating a syn-
thetic antenna, the returns from a number of spatial positions must be combined.
In doing this, one usually wishes to apply weighting to the signals for synthetic
antenna pattern sidelobe-level control; in the case of focused synthetic antennas,
one also wishes to adjust the phases of the signals before combination.

In the preceding discussion, the signal was represented as a function of time.
For present purposes it is preferable to consider the signals as a discrete se-
quence numbered from 1 to N. Let Sn represent the signal received when the
physical antenna is at the nth position of the antenna array. Let Wn represent
weighting applied to Sn, and let <$>n represent the phase adjustment required for
focusing.

The operation of synthetic antenna generation then consists of taking the vec-
tor sum of the signals Sn, adjusting their phases, and multiplying by weighting
factors. The sum of this operation is given by

2SHe**nWH = focused pattern (21.62)

In the case of unfocused synthetic antenna generation the phase adjustments <|>rt
are not made. In this case the signal operations required have the form

ZSnWn = unfocused synthetic pattern (21.63)

There are many mechanizations possible to carry out the operations indicated
by Eqs. (21.62) and (21.63). Some of them are described below. Two common
techniques are digital and optical in nature.

Discussions regarding optical and digital data processing are given in Refs. 7
through 11.



Optical Techniques. The optical techniques involve the recording of the radar
signals on a transparency, most frequently silver halide photographic film in any of a
number of formats. Initially the successive range sweeps were placed parallel and
side by side; later polar format was used. The growing understanding that we are
really collecting a portion of the three-dimensional spectrum has led to use of a three-
dimensional storage format.8 This topic will be discussed further in Sec. 21.5.

The most frequently used optical processors are based on the tilted-plane op-
tical processor described by Kozma, Leith, and Massey.7 In this processor, both
the input plane and the output plane are tilted (i.e., they are not perpendicular to
the optical axis). The optical components are telescopic, and the powers of the
elements in two perpendicular planes are unequal. The telescopic elements in-
clude both spherical and cylindrical elements.

The evolution of this processor is based in part upon the recognition that sig-
nal histories may be assigned focal lengths and behave to some degree as optical
elements.

The azimuth along-track signals from a point target are similar to those of a
zone plate. The focal length is proportional to target range. If pulse compression
is used, all targets have associated with them zone plates in the range direction.
These all have the same focal length. The recorded signals before processing are
often referred to as signal histories.

Digital Processors. Digital processing has emerged as the preferred means
when the amount of data to be processed is not too great. Mechanization of SAR
operations is often computation intensive.

In cases not based on polar format, correlation operations have been used.
These operations are usually performed using frequency-plane equivalent of cor-
relation.

$M 8(q ~x)dx = JF(CO) G(O)) exp (/«*) </o> (21.64)

In other cases, such as polar format, Fourier transform operations are indicated
and the use of the fast Fourier transform (FFT) plays an important role.

Associated with FFT processing is the fact that algorithms exist for processing
two-dimensional data with sampling points in the rectangular arrays, whereas the
sample points obtained are equally spaced on radial lines. This requires format-
ting operations on the data points to convert them to rectangular format.12'13

Imagery from synthetic aperture radars is shown in Figs. 21.5 and 21.6. These
images were provided by the Environmental Research Institute of Michigan
(ERIM).

27.5 ADDITIONAL SYSTEM CONSIDERATIONS

In this section a number of considerations peculiar to synthetic aperture radar are
discussed. Some are additional performance requirements on the components of
the system; some are concerned with system aspects.

Antenna. The horizontal aperture of the antenna determines the finest
azimuth resolution achievable in a single-beam synthetic aperture radar except
for the searchlight mode. Moreover, in the signal processing it is assumed that
the antenna gain is constant as a function of along-track position. Thus, it is
necessary to have a degree of stabilization of antenna pointing so that the beam



FIG. 21.5 STAR-I radar imagery, lower Lake St. Clair, upper Detroit River. Resolution, 20 ft (6 m).
(Courtesy Environmental Research Institute of Michigan.)

rotation is some minor fraction of the beamwidth. In most cases, the antenna is
side-looking, although in some cases the antenna is positioned to an angle off
broadside and the system then operates in what is called the squint mode.

Receiver-Transmitter. The transmitter and receiver for synthetic antenna
radars require maintenance of coherence of the radar signals. Consequently,
there is emphasis on the stability of the oscillators and more rigorous
requirements on the components. The output of coherent radar is the output of
a synchronous demodulator rather than that of an envelope detector commonly
used in radars. The output is bipolar video, in which a reference bias level
corresponds to zero level of video output.

Storage and Recording. It is inherent that synthetic antenna radars and
pulse compression radars require the storage of radar data, because the data
for synthetic antenna generation does not occur simultaneously but is collected
over some interval of time. Operations are then performed on these signals to
achieve the selectivity of the radar. Moreover, each radar return participates in
forming the output for a large number of points on the output map. The
requirements for storage are therefore very large. Since a high volume of
storage is required for a fine-resolution radar system, photographic storage is
commonly used.

For digital processing, storage of the digital signals after analog-to-digital (A/
D) conversion is required. The amount of this data can be great and often limits
the area over which fine resolution can be obtained. A description of what needs
to be done is given in Refs. 12 and 13.

In selecting a storage medium one must consider the rate at which information
must be recorded, the amount of data to be recorded, and the rate at which the



FIG. 21.6 STAR-I radar imagery, lower Detroit River. Resolution, 20 ft (6 m). (Courtesy of En-
vironmental Research Institute of Michigan.)

storage must be read out for performing the azimuth compression and the pulse
compression.

Motion Compensation. In generating the synthetic antenna the signal-
processing equipment assumes that the radar flies along a straight line at
constant speed. In practice, the vehicle carrying the antenna is subject to
deviations from unaccelerated flight. Therefore, it is necessary to have
auxiliary equipment to compensate for other than straight-line motion. Motion-
compensation equipment must include sensors capable of detecting the
deviation of the flight path from a linear path. The output of these sensors is
used in a variety of ways. For motion compensation proper, the received-signal
phase must be adjusted to compensate for the displacement of the real antenna
from the location of the ideal synthetic antenna being generated.

A consideration of the geometry involved shows that the phase correction that
must be applied is a function of depression angle. Consequently, the correction
must be made as a function of range. The rate of change correction is very rapid
at steep depression angles and becomes slower at shallow depression angles.

Squint Mode. In most examples of synthetic aperture radar, the beam is
directed at right angles to the ground track of the aircraft. In some cases,
however, it is desirable to "squint" the antenna beam so that an area either



forward or aft of the aircraft is mapped. It is necessary to position the antenna
beam so that the maximum of its radiation pattern points in the desired squint
direction. Moreover, it is usually necessary to modify the signal processors to
take into account the average doppler frequency shift that occurs when the
antenna points in a direction other than normal to the flight path. It is, of
course, also necessary to take the geometry of the squint mode into account in
designing recorders and displays.

Spotlight Mode. In Sec. 21.2 Eq. (21.8) was derived for a radar in strip-
map mode, i.e., for the case that the radar antenna is in a fixed orientation and
the radar beamwidth RK/D is used as the length of synthetic aperture
generated. One can increase the antenna length by use of spotlight mode. In
this case the radar antenna is continuously pointed toward the region being
imaged. For this case one can make a synthetic antenna length longer than RK/
D9 or one can make several images and noncoherently integrate them.

Spotlight mode also makes possible the use of higher antenna gain.

Effects of Motion Errors. In generating synthetic aperture antenna images,
one needs to estimate the along-track and cross-track velocities of targets in
order to derive the matched filter to use in imaging. If one has an error in the
radial velocity of the target, one gets a rotation in target position. If one has an
error in along-track velocity, a limit is set to the achievable resolution.

Multiple-Beam Radars. The analyses leading to Eqs. (21.5) and (21.8) are
correct for synthetic aperture radars which radiate only one beam. However,
system parameters sometimes dictate the use of multiple beams.

The use of multiple beams is motivated by several considerations, such as am-
biguity avoidance and the achievement of higher antenna gain. The achievement
of a larger area coverage rate is another but less likely motivation. A great deal of
flexibility is possible. The multiple beams may be arranged in the azimuth direc-
tion or the range direction, or both. With the use of multiple beams, it is possible
to achieve any desired combination of unambiguous range, resolution, and area
rate. The antenna area and the number of beams are determined from the perfor-
mance parameters.

A more complete analysis of multibeam systems is given in Refs. 14 through 17.

ISAR. Inverse synthetic aperture radar (ISAR) is the term used when the
motion of the object being imaged is used instead of the motion of the radar. A
more general case is that in which both the radar and the object are in motion.
In ISAR, the target motion is often not known to the radar. Hence, a major
part of the problem is determination of the target motion to generate the
matched filter needed to generate an image. A number of techniques have been
studied for providing data regarding both translation and rotation of moving
objects. An example of such work is that of B. Steinberg.18

Three-Dimensional Spectrum. The analysis starting with Eqs. (21.15) and
(21.16) contains the assumption that a matched filter is applied to the radar
returns from each point. This can in fact be done. It would reduce the signal-
processing load if a reference function could be applied over a region. This,
too, can be done, but range walk and defocusing set limits to the size of a
patch which can be handled in this manner. Of the methods that have been
proposed, the use of polar format and its generalization and the collection of a



portion of the three-dimensional spectrum of the scene being mapped are most
significant.

If one starts with an expression such as Eq. (21.17), performs the integration
with respect to T, where T is a dummy variable to replace /, and then makes a
Fourier transform of the results, one gets

£0(co) = J p(jc,j,z)IG(o))l2exp [-y(2a>/c)(2r/c-2r'/c)] dx dy dz (21.65)

In this equation IG(o>)l2 is the Fourier transform of the autocorrelation function of
g(t). Let the vector difference, or r, and r' be represented by q.

T = r' + q (21.66)

so that

r' • a q2 + (r' • qlr'}2

r = r'+~^ + ~ 2r, (21.67)

If one can neglect the last term, and if one writes

f = r/r (21.68)

for the unit vector along r, one can write

r - r ' = f.q (21.69)

Let a vector G be defined by

G = (2o)/c)f (21.70)

then

£o(«>) = JpOt,;y,z)G(a>)2exp (-JG ' q) dq (21.71)

One notes that except for the factor IG(o>)l2, Eq. (21.71) has the form of a three-
dimensional spectrum of p(q).

Equation (21.71) has been derived by Jack Walker.8 Related developments in-
volving use of the projection-slice theorem have been given by a number of other
authors.9'19

In interpreting Eq. (21.71), it is useful to consider the point r as a general point
on the object being imaged and r' as a reference point on the object. The vector
q is then the vector from the reference point to all other points on the object, and
the integration extends over the object.

Equation (21.71), being a three-dimensional spectrum of an object, requires
that the data be taken with an origin of coordinates and a coordinate system fixed
with respect to the object being imaged. Hence the effect of translation and ro-
tation of a moving object must be compensated in order to image that object.

The three-dimensional spectrum is the proper format for storing radar data.
The polar format is a special case in which the radar collection is performed in a
plane. Use of the projection-slice theorem enables one to project the data along
any direction. This promises to give images of slices of moving objects.

The projection of the radar data, followed by a two-dimensional Fourier trans-



form, can be used to form images for the most general motion of both the radar
and the moving object.
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