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15.1	 Introduction 

Digital systems are used to process discrete elements of 
information. They are built from digital electronic circuits 
that process discrete electrical signals using simple logic and 
arithmetic operations. A digital electronic system can also 
be used to hold or store discrete elements of information 
and this gives the system a memory capability. The ability 
to store information or data and to process the data by 
logical or arithmetic operations is central to the design of 
nearly all digital information-processing systems including 
digital computers. The function of a digital system is deter-
mined by the sequence of operations that are performed on 
the information or data being processed. A digital system 
can be classified by the way in which its sequence of oper-
ations is implemented. 

A digital system is considered to be hardwired if the 
sequence of operations is governed by the physical intercon-
nection of the digital processing elements. For example, in 
hardwired logic systems the physical interconnections of 
the elements govern the routes by which data flows between 
the processing elements and thus the sequence of processing 
operations performed on the data. Conventionally, a hard-
wired system is considered to be inflexible because the 
design is specific to a particular processing function: if the pro-
cessing function is changed, then the processing elements 
and their interconnections have to be altered. 

The flexibility of hardwired systems has been much 
improved by the introduction of programmable (i.e. config-
urable) logic devices such as Programmable Logic Arrays 
(PLAs) and Field Programmable Gate Arrays (FPGAs) 
that can be programmed or configured to implement an 
application-specific digital signal processing function. 
Flexibility has been improved further with the introduction 
of re-programmable (i.e. re-configurable) devices that can 
be reprogrammed easily during fast-prototype system devel-
opment, and can be reprogrammed after a product has been 
deployed to provide enhanced features or performance. 
Progress in this area has been rapid and the latest genera-
tion of re-programmable FPGA device can be configured with 
a wide variety of communication interfaces. This opens 
the possibility of using advanced communication technology, 
such as the Internet, to re-program or re-configure a remote 
hardwired system. 

A digital system is considered to be genuinely program-
mable if a prescriptive program of instructions (i.e. soft-
ware) can be used to control the data-processing function 
of the system. This type of system usually incorporates a 
general-purpose processing element which is programmed 
to implement a specific function in a predetermined way. 
The coded instructions are normally stored in the memory 
part of the system and the program forms an integral part 
of the system. The ability to define the function of the 
digital system by programming introduces considerable flex-
ibility into the system because the programming operation 
can take place after the general-purpose digital elements 
have been designed. It also means that identical hardware 
designs can be used in a number of different applications, the 
system being tailored to the individual tasks by the applica-
tions program. A wide range of simple f unction ixed-f
programmable systems, such as sequencers and micro-
programmed controllers, are used as controllers in embedded 
electronic systems. In this type of application the sequence 
of instructions is usually held in read-only memory 
(i.e. firmware) which increases the robustness of the system. 

The digital computer is a very important class of stored 
program system. The computer or microprocessor is distin-
guished by the fact that its processing function depends on 

both the prescriptive sequence of coded instructions and the 
value of the data being processed. In effect, the program 
prescribes a number of possible sequences of operations 
and the conditions under which they may be carried out. 
The computer, under program control, assesses the data 
and determines which specific sequence of instruction is to 
be executed. It is the ability of the computer to take into 
account the value of the data being processed, when taking 
decisions about the type of processing to be performed, 
which makes the computer such a significant and powerful 
information-processing device. 

All three forms of digital electronic system find wide-
spread application. Traditionally hardwired logic has been 
used extensively to provide the control and interface logic 
for more complex digital components such as micropro-
cessors and other very large scale integration (VLSI) devices. 
It is also used in the design of high-speed signal processing 
circuits for FPGA implementation. Increasingly, hardwired 
logic is used to provide the interface circuits between the 
main functional components within a complex FPGA. 
Where flexibility is required, it is common to use reconfigur-
able systems particularly in more complex applications. 

Programmable systems are used in an extremely large 
range of applications. The simpler fixed-function program-
mable systems are often used in repetitive tasks such as 
input scanning and data acquisition. They are also used in 
mass-produced products and as components of larger sys-
tems such as telephony equipment. However, the continu-
ally increasing computational power of the microprocessor 
and its derivatives, such as digital signal processing (DSP) 
devices or powerful reduced instruction set (RISC) proces-
sors, has led to many of these applications being designed 
using fully programmable digital systems. In addition, 
commercial off-the-shelf (COTS) microprocessors are com-
monly used in both stand-alone and embedded systems. 
Such systems are providing economic solutions to design 
problems in an increasingly wide range of application. 

The increase in size of VLSI logic circuits has led to a new 
generation of reconfigurable devices that are large enough 
to contain a complete digital processing system within a 
chip, called System on Chip (SoC) devices. An SoC device 
can be configured to include an embedded digital RISC 
processor, memory, communication interfaces, clock man-
agement, application-specific digital signal processing 
(hardwired logic functions), and appropriate internal inter-
faces and data buses. This allows the designer to partition a 
design into those parts that will be implemented as software 
executing on the embedded processor and those parts that 
will be implemented in hardware as high-speed application-
specific logic circuits. This design approach, known as 
co-design or co-ware, has the significant advantage that 
established and high-performance parts of the design can 
be committed to application-specific hardware, and more 
adventurous parts of the design or low-speed functions can 
be committed to easily changed software. This minimises 
risk, facilitates time-to-market which gives competitive 
advantage, and provides a good path to post-deployment 
upgrades of the system's capabilities and performance. 

15.2	 Structured design of programmable 
logic systems 

The design of an application-specific digital system typically 
involves the so-called `top-down' approach and starts from 
a specification which includes a statement of the problem 
and the identification of the principal functional parts of 
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the system. This can be elaborated as an architectural speci-
fication which identifies the major components of the data 
or signal processing system and a control specification 
which describes an algorithm or procedure for the func-
tional control of the processing system. 

Traditionally a systems-level design approach is adopted 
and the design is developed through a structured process of 
elaboration and refinement. During this process, the data-
or signal-processing specification is translated into a set of 
digital signal processing modules or circuits. Similarly, the 
control algorithm is depicted as a finite state machine 
(FSM) and is translated into a sequential logic circuit that 
generates the sequence of control signals which coordinate 
and synchronise the signal processing modules. In large 
designs the process of design refinement through analysis 
and decomposition can be applied repeatedly to form a 
hierarchy of functional descriptions. The process of decom-
position is conventionally terminated when the granularity 
of the description matches that of commonly used digital 
electronic building blocks such as arithmetic circuits and 
memory elements, or sets of logic gates. However, modern 
programmable devices, such as complex programmable 
logic devices (CPLDs) and FPGAs, have complex internal 
structures that are purpose designed for the efficient imple-
mentation of large functional units such as multipliers or 
ALUs. Therefore, it is often counter-productive to elabo-
rate a design down to gate level without taking into account 
the logic structure of the target device. 
Figure 15.1 shows the general organisation of a system 

designed using such an approach. It comprises external 
inputs and outputs, the controlled circuit which performs 
the data or signal processing, the controller which governs 
its behaviour, and internal signal paths which transfer con-
dition or status information from the controlled circuit to 
the controller and control signals generated by the control-
ler to the controlled circuit. The FSM controller is a simple 
sequential circuit that comprises: a state register which 
stores the current value of the state variables, combina-
tional logic for generating the next value of the state vari-
ables, a clock signal which synchronises the transition from 
the current state to the next state, and combinational logic 
for generating the value of the outputs (which are either a 
function of the current state or a function of the inputs and 
the current state). 

Structured design techniques are well suited to computer-
aided design (CAD) or electronic design automation (EDA) 
procedures. In particular, the hierarchical decomposition 
techniques used during the design phase have a one-to-one 
correspondence with the hierarchical CAD techniques used 
in traditional schematic diagram-based approaches to the 
capture, simulation, layout and routing, implementation, 
test and validation of complex circuit designs. Increasingly 
CAD tools provide high level specification capture 
facilities, such as graphical state machine (FSM) editors, to 
help capture design features in a tangible and user friendly 
manner. 

The trend is to write the system specification using 
either a formal notation, or a programming language such 
as C or concurrent extensions of C, or a hardware descrip-
tion language (HDL) such as VHDL or Verilog. These 
notations provide constructs that facilitate the description 
of complex logic systems or algorithms and an underlying 
mathematical structure that can be used to reason about 
the behaviour of the systems. The use of such abstract 
or high-level notations has been found to facilitate design 
by allowing the designer to focus attention on the 
functional aspects of the design without the need to bind 
the design to a particular implementation technology. This 
is supported by modern CAD tools that allow high-level 
behavioural specifications to be simulated to verify 
the function of the system (i.e. using symbolic simulation) 
before the high level description is compiled (i.e. 
synthesised) into a logic circuit. It is conventional to use 
the high-level description language to describe both the 
design (or unit-under-test) and a test-bench (test sequence 
generator and response analyser). Thus the highest level in 
the design hierarchy comprises both the design and a test-
bench. 

Design synthesis CAD tools are commonly used to trans-
late high-level behavioural digital systems specifications 
into logic circuits. The synthesis process is not easy, and 
modern synthesis tools typically use artificial intelligence 
techniques and employ deep knowledge of the architecture 
of the FPGA in order to synthesise sensible, efficient 
and fast logic circuits. Once synthesised, the design can be 
incorporated into the conventional logic design process of 
post-synthesis simulation, routing, implementation, test and 
validation. 

Conditional 
External (immediate) 
inputs 

State 
outputs 

FSM controller 

outputs 

Clock 

Controlled 
circuit 

Controlled 
circuit 
outputs 

Figure 15.1 General organisation of a structured digital design 
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15.2.1 Design for test 

It is normally a principal design requirement that the circuit 
should be testable. In most structured design methods the 
derivation of the functional specification goes hand-in-hand 
with the specification of tests to verify that the designed 
circuit functions as intended. The problem of testing a cir-
cuit is made more difficult when it is implemented as an 
ASIC because the limited number of pins on the integrated 
circuit restricts access to test points in the circuit. In parti-
cular, the constraint that test inputs must be applied via the 
external input pins limits the controllability of internal parts 
of the circuit under test. Similarly, the constraint that the 
response of the circuit must be observed using the output 
pins limits the ability to observe the state of internal parts 
of the circuit under test. For testability, it is necessary to 
ensure that the accessible or primary inputs can drive each 
node of the circuit (the property of controllability) and that 
each node can be observed from the accessible or primary 
outputs (the property of observability). 

Combinational logic is tested by applying a set of test 
patterns to the inputs of the circuit, measuring the circuit's 
response at its outputs, and comparing its response with its 
predefined fault-free function. In order to test a testable 
circuit, it is necessary to generate a set of inputs (test vectors) 
which can be applied to the primary inputs and drive each 
node of the circuit. Observability problems may arise if  
redundant logic to added to a circuit to provide hazard 
cover. 
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The problem of testing sequential logic is considerably 
more complex because the state of a sequential circuit is a 
function of both the current inputs and the previous state of 
the circuit. To reduce the problem of testing such circuits, it 
is desirable to open the feedback paths (which are essential 
to sequential behaviour) and thus change the problem to 
one of testing the constituent next-state and state-output 
combinational logic. This requires the introduction of addi-
tional gates to inhibit the feedback paths, to allow the asser-
tion of test states, to ensure the direct control of the clock, 
and to allow the observation of the next-state variables. 
This approach tests the combinational components and 
memory elements but does not provide a full-speed test 
of the actual sequential circuit and additional tests are 
required to ensure that the circuit is free of race hazards. 

In the case of structured designs, a primary concern is the 
test of the controller which coordinates and synchronises 
the data or signal processing modules. In a typical FSM, 
the function of the controller is clearly defined by the con-
trol algorithm and the finite state machine controller is rela-
tively easily tested once the feedback loops of the sequential 
part of the circuit are opened. Furthermore, the state regis-
ter can easily be reconfigured in the test mode to form a 
shift register for the entry of test data and the capture of 
test results. This is shown in Figure 15.2 for a controller 
with two state variables; the test mode select signal TMS 
causes the reconfiguration of the D-type state register to 
form a test vector shift register (shown in bold). This tech-
nique, which is known as scan path testing, can be applied 

Conditional 

State register 

Figure 15.2 Scan-path design for an FSM controller 
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to a wide range of circuit and there are many variations of  
the theme, such as random scan and level sensitive scan 
techniques. 

In general, significant increases in controllability and 
observability can be obtained if serial input and output 
techniques are used to load test data into an ASIC and 
remove capture response data from the ASIC. This can be 
achieved by incorporating a general-purpose shift register 
with serial-load/parallel-out, and parallel-load/serial-out 
facilities within the ASIC. In a typical test, the ASIC circuit 
would be put into test mode and the test stimuli or vector 
would be serial loaded into the shift register. The ASIC 
would then be switched into normal mode and the test 

tdata present at the parallel output of the shif register 
would be allowed to excite the circuit. When the response 
had stabilised, observation data would be latched into the 
shift register using the parallel-load facility. The ASIC 
would then be put into test mode and the response would 
be output using the serial-output facility of the shift register. 
Clearly, the additional test circuits must be built into the 
ASIC as part of the design. This method requires up to five 
pins on the integrated circuit to be dedicated for test pur-
poses: test mode select (TMS), serial test data in (TDI), 
serial test data out (TDO), direct control of the relevant 
clock circuits (TCK), and a reset (TRST). The use of such 
signals is consistent with the JTAG/IEEE standard 1149.1 
which provides a framework for test at board and chip test 
level, primarily using the Boundary Scan technique that is 
commonly provided as a built-in component of modern 
VLSI and ASIC devices. 

15.3 Microprogrammable systems 

A typical digital system's design can be decomposed into a 
set of signal or data processing elements and a set of Finite 
State Machines (FSMs) which coordinate and control the 
signal- or data-flow and processing. To do this, the FSM 
controllers monitor any necessary signals (such as inputs 
or status signals) and generate the control signals necessary 
to coordinate, synchronise and control the signal- or data-
processing elements. It follows that the FSMs form a crucial 
part of such designs, and a variety of structured design 
methods have been devised for capturing and synthesising 
the FSM controllers. These include traditional algorithmic 
state machine or ASM design methods, and state-transition 
diagram methods that allow direct synthesis of the design 
from Mealy or Moore diagrams. In addition, many HDL 
synthesis tools include program analysis tools that are 
designed to detect FSM-like structures and specifically 
synthesise FSM components. A key point in all these design 
methods is the assignment of a unique binary coding to each 
state of the system and the design of a bespoke finite state 
machine to generate the required state sequences and state 
outputs. 

The need for bespoke hardware can be removed by 
designing a general-purpose controller (or finite state 
machine) which can be `programmed' to produce the neces-
sary control functions. To accommodate such an approach, 
a simple FSM can be reduced to a networks of states, state 
outputs, and single-qualifier decisions by replacing any 
conditional or immediate outputs by state outputs and by 
inserting additional states where necessary to ensure that 
only one qualifier is associated with each decision. A unique 
state identifier is then assigned to each state according to a 
normal binary count (as far as possible) so that the state-
machine design can then be implemented using a counter, 

with appropriate controls, instead of with a state register 
and combinational next state logic. The modified FSM 
can then be reduced to a set of `instructions' by identifying 
commonly occurring structures and their associated counter 
control logic as follows: 

(1)	 Sequence of states: increment counter unconditional 
(IUC). 

(2) Decision: increment or branch conditional (IBC). 
(3)	 Wait until condition: hold or increment conditional 

(HIC). 
(4) Branch unconditional: branch unconditional (BUC). 
(5) Loop forever: hold unconditional (HUC). 

The counter is normally controlled using two control 
lines, `counter enable' (CE) and `counter load' (LD). On 
the next clock, the counter is incremented if CE is asserted 
or a branch address is loaded into the counter if LD is 
asserted. Thus, the counter control logic necessary for each 
construct or primitive instruction defined above can be 
readily determined. The use of mnemonics (such as IUC, 
HIC etc.) to represent commonly occurring structures 
allows the FSM to be replaced by a list of primitive sym-
bolic `instructions'. Each instruction will define the present 
state identifier or location count, the mnemonic describing 
the control operation to be performed on the counter, the 
identity of any qualifier, the name or value of any branch 
address, and the name or value of the state outputs. A typ-
ical instruction format is shown in Figure 15.3. 

A suitable processing architecture for the above primitive 
instructions is shown in Figure 15.4. The state register is 
implemented with a controlled counter and, as only one 
instruction is needed per state, the input and output logic 
is efficiently implemented in ROM. The relevant input 
(or qualifier) for each state is chosen by addressing a multi-
plexer. Before the contents of the ROM (or RAM) can be 
defined, each instruction must be assigned a binary code or 
`opcode' and each input must be assigned a MUX address. 
The instruction decoder is needed to translate the instruc-
tions into suitable control signals for the counter. In the 
case of conditional instructions, the counter control signals 
depend on both the instruction type and the qualifier or 
`flag'. 

Thus, each instruction stored in ROM comprises an 
opcode, the binary MUX address for the input qualifier, 
the binary branch-location address, and the binary values 
of the state outputs. This form of instruction is known as 
a microinstruction. The function of the controller can be 
changed by simply altering the microinstructions, and this 
process is known as microprogramming. Microprogramming  
is tedious and error prone and software development tools 
such as assembly language generators are often used to 
allow programming using symbolic notations. 

In practice, a number of proprietary microprogrammable 
controllers have been developed. They are often equipped 
with a primitive stack to allow a limited procedure or sub-
routine facility. This requires additional instructions such as 
`call procedure' or `branch to procedure' and `return from 
procedure' and mechanisms to increment the current counter 
(or ROM address) and save the incremented address in 
the stack, to load the procedure start address or value into 

Figure 15.3 Microinstruction format 
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Figure 15.4 Simple microprogrammable architecture 

Figure 15.5 Microprogrammable controller 
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the counter, and to retrieve the address from the stack and 
load it into the counter. An external load facility for the 
counter may also be provided so that the controller can be 
used in conjunction with another processor. This gives the 
architecture shown in Figure 15.5. Such processors often 
have regularised instruction sets and well-developed tools 
for software development including simulation and emula-
tion facilities. 

Since a microprogrammed controller is a relatively simple 
circuit; designers have often taken the opportunity to 
incorporate a data processing capability into the design. 
Significantly, such microprogrammed `processors' often 
incorporate a specialised, very high performance, arithmetic 
processor. Typical examples include high performance 
floating-point arithmetic processors, and digital signal 
processing devices (which include a high-speed multiplier 
and accumulator for implementing the repetitive add-and-
multiply operations found in digital filtering algorithms). 
Microprogrammed controllers are readily available as 
stand alone devices, or as pre-prepared HDL scripts, 
known as `intellectual property (IP) cores', that can be 
embedding within an HDL design and synthesised for an 
FPGA target. 

15.4 Programmable systems 

A programmable system, such as a microprocessor or com-
puter, comprises a general-purpose processing unit which 
processes data or digital signals. The processing operations 
performed are specified by a computer program, which con-
sists of a set of logical instructions stored in the computer 
memory. 

A programmable system will comprise digital electronic 
circuits to: 

(1) input signals or data from external circuits or systems; 
(2) move or transfer the data within the system; 
(3) store the data before, during and after processing; 
(4)	 process the data by logic, arithmetic or bit manipulation 

operations; 
(5) output the processed data to external circuits or systems. 

Each of these operations can be performed by an appro-
priate configuration of combinational and sequential logic 
circuits including memory elements. In practice, program-
mable systems comprise a general-purpose logic design 
which can be configured to perform a wide range of opera-
tions. The hardware is controlled by a program or sequence 
of instruction codes which define the operations necessary 
to implement a particular processing function. The instruc-
tion codes are normally stored in the memory part of the 
system and the function of the system can be changed 
simply by altering the stored program. This type of system 
can be considered to be composed of two parts: the hardware 
which is basically independent of the application and the 
software which defines the application function. Since the 
hardware part of such a system is invariant, it can be pro-
duced economically as a standard design or device. 

There are basically two types of general-purpose pro-
grammable system. The fixed function programmable 
machine is a limited form of programmable system which 
is constrained to perform a prescribed and fixed sequence 
of instructions. This type of system does not have the 
capability under software control to select between two 
alternative sequences of instruction. A fixed function 
programmable machine is therefore forced to execute a 

fixed sequence of instructions in all circumstances and is 
properly regarded as a programmed machine rather than a 
computer. The application function of such a system can be 
altered only by reprogramming the system. These systems 
can be used in any applications in which the processing 
function does not depend on the nature or value of the 
data being processed. 

The digital computer is the most powerful and flexible 
form of programmable system. A program of instructions 
which are executed in sequence again defines its function, 
but in the case of the computer the program may specify 
alternative sequences of instructions and the conditions 
under which they can be executed. For example, conditional 
expressions and alternative sequences are implicit in high-
level programming constructs such as `if condition-true 
then . . .', `repeat . . . until condition-true', and `while condi-
tion-true do . . . '. Special hardware is required to carry out 
this type of operation and a computer is equipped with a 
logic circuit, known as a status register, which is used to 
store information about the status of the processor after it 
has executed an instruction. When a program is executed, 
each conditional expression is evaluated (using the actual 
values of the data variables) and the resulting values of the 
bits or flags in the status register are used to identify which 
alternative sequence of instructions is to be executed next. 
Thus, the order of processing may be modified according 
to the result of the instruction. It is this mechanism which 
allows a program to take into account the nature of the 
information being processed. 

In effect, the computer can be programmed to take a 
decision about the future courses of action that it may take, 
based on the actual value of the data being processed. It is 
this facility which characterises a proper computing system 
and which makes the computer such a powerful data pro-
cessing system. Such systems are providing economic 
solutions to digital signal and data processing problems in 
an increasingly wide range of applications. 

15.4.1 The logic design of a digital computer system 

A digital computer system can be considered to be com-
posed of two logic structures. The first is associated with 
the flow, storage and processing of data and consists of the 
data input and output subsystems, the data highways used 
to move or transfer data within the system, the memory 
which is used to store the data, and the arithmetic logic 
unit which is used to process the data. The function of the 
processor is prescribed by a program of instructions held in 
memory. The second structure is responsible for controlling 
the fetching of instructions from memory and for ensuring 
that they are executed in the correct sequence. It also 
governs the detailed execution of each instruction and con-
trols the data-flow and data-processing elements so that 
they perform the required processing operation. 

The control structure consists of the memory which is 
used to store the program code and mechanisms for identi-
fying the location of the next instruction, for fetching and 
decoding the instruction, and for identifying the location 
of any inputs or stored data which form the operands in a 
processing operation. It controls all aspects of the execution 
of the instruction including fetching operand data and, 
when necessary, taking into account the status of the pre-
vious programming operation. It also identifies the destina-
tion location of any resultand data generated by the 
processing operation and stores the resultand or generates 
an output. 

The data-processing and program-control structures are 
heavily interconnected and often share common hardware. 
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In particular, the program code and the data being 
processed are usually stored in an identical binary format. 
It is usual for code and data to be stored in separate areas 
or segments within a common memory unit. 

15.4.2 Processor architecture 

Computers and microprocessors are general-purpose 
programmable systems which perform sequential proces-
sing operations. Classically, they are constructed using gen-
eral-purpose functional units such as a central processing 
unit or CPU, a memory unit, and an input/output subsys-
tem, as shown in Figure 15.6. 

The CPU is the heart of the computer, it contains the 
control and timing unit (CTU) which controls the pro-
grammed operation of the system and the arithmetic logic 
unit (ALU) which processes the data. An external clock 
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provides the timing pulses or reference signals required by 
the CTU. The CPU also contains a number of important 
registers such as the program-counter which points to the 
next instruction, the instruction register which holds the 
current instruction, and the status register or flag register 
which stores the status information about the result of 
the previous instruction executed by the CPU. 

The memory unit provides storage for program code 
and data. The code and data are always considered to be 
separate entities although they may share physical memory. 
(Some processor designs enforce the conceptual separation 
of code and data by providing separate memories for code 
and data.) The memory is arranged into words which con-
sist of several binary digits, typically 8, 16 or 32 bits. Each 
word can be individually addressed and operated on by the 
computer. 

The input/output subsystem of a computer provides the 
interface to external circuits or systems. Data may be passed 
in and out of the computer via serial or parallel interfaces. 
The input/output system is used to input program code, to 
input data for processing, and to output results. It also pro-
vides the means of communication with the operator via a 
man-machine or human-computer interface (MMI or HCI). 
The processing power of the computer can only be used if  
the input/output subsystems allow efficient communication 
between the user or application and the processing system. 

Many computer systems are configured around one or 
more general-purpose data highways. They typically con-
sists of a common bus structure of address, data and control 
lines and are used to communicate to all devices external to 
the CPU including memory, input/output systems and 
backing stores. The simple bus-orientated architecture illu-
strated in Figure 15.7 provides ease of access to the control, 
address and data highways which are used to interface any 
logical system to the CPU. Bus-oriented architectures are 
used in many designs to provide a flexible and easily 
expanded computer system. 

15.4.3 Central processing unit 

The CPU contains the CTU which coordinates, synchro-
nises and controls the fetching of instructions from memory 
and the execution of the instructions. The execution of an 
instruction will typically involve fetching operand data 
from memory, processing the data in the ALU, and storing 
the result in memory. The CPU also contains at least the 
minimum set of internal registers necessary for the execu-
tion of a program. These include the program-counter 

Figure 15.7 Bus-orientated system architecture 
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register, the instruction register, the data memory reference 
registers, and the CPU data registers. 

15.4.3.1 Program-counter register 

This holds the address of the memory location containing 
the next instruction to be executed. It is the programmer's 
responsibility to initialise the program-counter correctly, so 
that it points to the first instruction in the program. During 
program execution, the program-counter is automatically 
incremented by the CTU to point to the next instruction. 
In this way the CPU is forced to execute instructions in 
strict sequence. However, some instructions are provided 
which modify the contents of the program-counter. For 
example, unconditional jump, branch, or `go-to' instructions 
simply overwrite or modify the contents of the program-
counter to effect a branch to another instruction. Similarly, 
conditional jump or branch instructions modify the con-
tents of the program-counter if a particular condition is 
satisfied. This feature allows the program sequence to be 
modified if a specified condition is detected in the data 
being processed e.g. if the result of the previous instruction 
was negative. 

15.4.3.2 Instruction register 

This register holds the current instruction so that it can 
be decoded and input to the control and timing unit. 
Specifically, the instruction register holds the opcode which 
defines the type of instruction. Depending on the type of 
instruction, it may also hold immediate operand data or 
the addresses of operands and the address of the resultand. 
Since operand data and addresses comprise many bits, they 
are commonly held in temporary registers which can be 
considered as extensions to the instruction register. The 
contents of the instruction register can not be overwritten 
by the ALU, nor can they be accessed by a programmer. 

15.4.3.3 Status register 

This comprises a number of discrete status bits or flags and 
holds status data about the result of the previous instruction 
executed by the ALU. The data are used when computing 
`decisions', such as selecting one of two possible future 
courses of action. Processors actually compute decisions of  
this type in two stages. In the first stage the ALU computes 
the condition which governs the decision; the Boolean result 
(yes/no or true/false) is held in the status register. In the 
second stage, this result is used as a qualifier in a condi-
tional operation, such as a conditional branch or jump, 
such that the value of the qualifier is used to choose the 
appropriate future sequence of instructions. It is the respon-
sibility of the programmer (or compiler writer) to ensure the 
correct and consistent use of the status register throughout 
the two-stage process of computing a decision. 

15.4.3.4 Data memory reference pointers 

These registers hold the addresses of the operands and 
resultand and are loaded during the instruction `fetch'. 
They are used to access data objects during the execution 
phase of the instruction cycle and should be capable of  
accommodating the various addressing modes associated 
with the complex data types used in high-level program-
ming languages. Therefore, it is perhaps more accurate to 
think of a data memory reference pointer as a mechanism 
which generates the address of a data object. The number of  

address registers available in a CPU is an important feature 
of computer architecture. Ideally, separate pointers or mech-
anisms are required for each operand and the resultand. 

15.4.3.5 CPU data registers 

These hold operands and resultand data during the execu-
tion of a program. Again, microprocessors differ, particu-
larly in the internal storage provided in the form of CPU 
data registers. However, most processors have an accumu-
lator register into which the ALU will automatically load 
the resultand of a processing operation. Many modern 
microprocessors have a larger number of CPU data regis-
ters which can operate as accumulators in complex arith-
metic and logic operations. 

Those parts of a processor which are of direct interest to 
a programmer are shown in the programmer's model which 
describes only those registers within the CPU which can be 
accessed by the programmer. Figure 15.8 shows the pro-
grammer's model of a typical microprocessor system. 

15.5.4 Control and timing unit 

The basic operation of a computer or microprocessor is 
governed by the control and timing unit (CTU) which gen-
erates the signals necessary to coordinate, synchronise and 
control the movement and processing of all information 
within the system. A simple external clock usually drives 
the unit, and this provides a time-reference signal from 
which the CTU generates the timing and control signals 
for the various logic subsystems in the computer. Modern 
high-performance processors may include a separate clock 
management subsystem which generates multi-phase timing 
sequences for use by the CTU. 

The control and timing unit is responsible for controlling 
the main operational cycle of the processor which is known 
as the `instruction cycle'. The instruction cycle can be split 

Figure 15.8 Programmer's model 
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into two distinct phases, the instruction fetch and the execu-
tion of the instruction. During the instruction fetch the 
address of the next instruction is obtained from the pro-
gram-counter mechanism and transferred to the memory 
address register (MAR). A memory reference operation 
is then performed on the code part or code segment of 
memory to read the opcode which is the first part of an instruc-
tion. The opcode data are transferred via the memory buffer 
register (MBR) to the instruction register where it is 
decoded and then input to the CTU. The program-counter 
is then updated to point to the next part of the instruction 
or to the next instruction. 

The opcode identifies any further memory reference 
operations which are required to complete the instruction 
`fetch'. The control unit uses the updated program counter 
to make reference to successive addresses in the code part of 
memory to fetch any further parts of the instruction, such as 
immediate data values or the addresses of the operands and 
the address of the resultand. This information is transferred 
to various temporary registers in the CPU for use during 
the `execute' cycle. At the end of the instruction `fetch', the 
CPU will contain all the information it requires to control 
the execution of the instruction and the program-counter 
will be pointing to the next instruction to be fetched (assum-
ing that the execution cycle does not compute a new pro-
gram-counter address). The various logic units used during 
the instruction `fetch' cycle are shown in Figure 15.9 in 
which the memory and input/output discriminator M/IO is 
used to distinguish between memory reference operations 
and any operations involving peripheral systems which 
may use the same address and data bus. 

The opcode also defines the sequence of operations neces-
sary to execute the instruction. During the execution part 
of the instruction cycle the control and timing unit will 
synchronise the transfer of data within the system and control 
the operation of the ALU. The control unit will access oper-
and data by transferring the operand addresses from the 
temporary registers to the memory address register to 
perform memory reference operations. In practice, many 
processors have a complex data reference pointer which 
will compute the address of the data object using not only 

Figure 15.9 Instruction `fetch' logic structure 

Programmable systems 15/11 

the temporary register but also base or segment registers, 
offset registers, and index registers according to the addressing 
mode specified in the instruction. If the computer has a 
memory-to-memory architecture, then operand data can be 
transferred direct from immediate access memory to the 
arithmetic logic unit and resultands can be returned direct 
to storage in immediate access memory. However, if the 
computer has a register-to-register architecture, then the 
operand data is normally transferred to a CPU register 
before being processed by the arithmetic logic unit and 
resultand data is held in the accumulator or transferred to 
another CPU register. The register-to-register architecture 
has distinct performance advantages, particularly when 
used with a multiple-instruction pipeline CTU, as in mod-
ern reduced instruction set (RISC) processors. 

15.4.5 Arithmetic logic unit 

The actual data processing operations are performed by the 
ALU, which is a general-purpose logic system and can 
normally perform logical, arithmetic and bit manipulation 
operations. The ALU operates under the control of the 
control and timing unit and its function is defined by the 
current instruction held in the instruction register. The ALU 
can perform both monadic (single operand) and dyadic 
(two operand) operations and, therefore, has two input 
data paths. It generates status information in the status 
register and has an output data path for the resultand. 
Depending on the architecture of the processor, the oper-
and data inputs may be from either immediate access mem-
ory registers or CPU data registers. The resultand is usually 
output to a special register, known as the accumulator, 
which is normally a multi-function register which can parti-
cipate fully in the processing operations. In some systems 
the accumulator is used to store one of the operands before 
a processing operation and is subsequently used to store the 
resultand. This technique removes the need to have two 
operand registers and may increase the operational speed 
of the processor. However, the need to minimise the number 
of CPU registers is no longer a major design objective and 
many modern microprocessors have a number of CPU regis-
ters of advanced design which can act as operand registers 
or accumulators. 

The ALU also contains the status register which is also 
known as a flag register or condition-code register. This  regis-
ter consists of a number of flip flops (flags) whose state 
reflects the result or state of the processing element at the 
end of the previous processing operation. This is illustrated 
in Figure 15.10 which shows in schematic form the structure 
of a typical ALU and the other logical systems associated 
with the execution part of the instruction cycle. 

15.4.6 Memory unit 

The memory unit provides storage for program code and 
data. Computers commonly use two types of memory, fast 
immediate-access memory and backing store memory, 
which have different roles and functions. 

The immediate-access memory is considered to be the 
primary memory unit of a computer, it is used to store 
program code and the data associated with the program 
so that it may be readily accessed during the execution of the 
program. Read only memory (ROM) devices may be used 
to store information which does not alter, such as program 
code or constant data, and random-access read-write 
memory (RAM) devices are used to store data which may 
be altered, such as the value of variables. The immediate 
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Figure 15.10 Instruction `execution' logic structure 

access memory is normally constructed using semiconduc-
tor memory devices. Typically, large memories are built 
using dynamic RAM memory devices which provide `high-
density' storage at relatively low cost. 

The immediate-access memory is normally limited in size 
by the computer architecture. For example, simple micro-
processors may have a 16-bit memory address and this 
limits the size of the immediate-access memory to 64k registers 
or elements. While a 64 k �( 8-bit memory is often sufficient 
for embedded applications such as dedicated control 
systems, larger memories are often required to support 
general-purpose applications software. Typically, modern 
microprocessors use 32-bit effective memory addressing 
and commonly have a 128 M byte or 256 M byte memory 
which is sufficient to run modern operating systems and 

applications software. However, the performance of 
memory-intensive applications, such as image processing, 
computer aided design (CAD), and interactive computer 
games, may benefit from larger memories. Therefore, more 
advanced microprocessors have the capability to physically 
address 1 G or more of memory. 

Many computers have facilities for using an area of mem-
ory as a stack. This is a block of RAM memory which is 
used on a last-in/first-out (LIFO) basis for storing context 
information, such as the values of the program-counter, 
status register, and other CPU registers, or for storing data 
such as the parameters passed to subroutines. This facility is 
particularly useful for storing addresses and register con-
tents during subroutine operations or during the context 
switches which take place following an interrupt. 
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Figure 15.11 Stack layout in RAM memory 

A stack is organised by a stack pointer, which is a CPU 
register holding the address of the last item placed on to the 
stack, also called the `top-of-the-stack'. Instructions are 
provided which automatically decrement the stack pointer 
before data is stored (PUSH) or automatically increment 
the stack pointer after data is retrieved (POP) from the 
stack. A stack grows downwards in the store as shown in 
Figure 15.11. 

Stacks can be used to implement nested subroutine calls 
by simply putting return addresses and CPU register con-
tents on to the top of the stack during successive calls. 
Recursive subroutine calls can be implemented in a similar 
manner provided parameters are passed to the subroutine 
on the stack and local variables are stored on the stack at 
each level of call. Typically, the parameters are pushed onto 
the stack before the subroutine call; following the call 
the parameters are accessed by the subroutine using 
indirect addressing (using any CPU address register other 
than the stack pointer so that the stack pointer is available 
for the next recursive call). Results can be returned using 
the same technique. The stack can be employed in a similar 
fashion to store register and address information following 
an interrupt, including multiple and re-entrant interrupts. 

Large immediate-access memories are relatively expen-
sive to implement and are unsuited to the long-term storage 
of large program or data files. Most computers are there-
fore equipped with auxiliary or backing stores which are 
normally sequential access storage systems such as magnetic 
memory hard discs, and removable sequential stores such 
as optical storage discs, 650 M byte compact discs or 
CDs (such as write-once, read-only CD-R or read-write 
CD-RW discs), or 4.7 G byte digital video discs or DVDs (such 
as write-once, read-only DVD-R or read-write DVD-RW 
discs). These systems provide economic storage for the 
large volumes of data which are commonly used in database 
or image processing applications. Most computers are still 
equipped with a floppy disc drive, though this legacy tech-
nology is increasingly irrelevant for backing store purposes 
and is usually reserved for system start-up (or boot-up) 
during installation or fault recovery. Magnetic tape 
cartridges still provide economic storage for backing up 
large-scale systems such as servers. 

15.4.7 Interrupts 

In many applications the computer must respond rapidly 
when an external event occurs. This is usually achieved by 
an interrupt facility. The CPU is provided with a special 
input, the interrupt control line, which is used to notify the 
processor of the occurrence of an asynchronous external 
event. When the event occurs, e.g. a key is depressed or 
a switch is closed, the interrupt control line is driven to a 
specified logical state and the CPU is interrupted. 

On detection of an interrupt, the processor carries out a 
sequence of operations that transfers control to a special 
form of subroutine, called the `interrupt handler' or `inter-
rupt service routine', which is located at a pre-determined 
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address in memory. The actions taken to invoke an inter-
rupt service program vary from computer to computer, but 
in general terms the following sequence occurs: 

(1) At the end of the current instruction the contents of the 
program counter and the status register are automatic-
ally stored in the stack and the interrupt line is dis-
abled. 

(2) The program counter is loaded with the address of an 
interrupt service routine, either directly or following 
interrogation of the interrupt source to determine the 
identity of the service routine so that the CPU can be 
vectored to one of a number of interrupt entry addresses 
appropriate to the particular interrupt. 

(3) The interrupt service program is entered. Care should 
be taken to ensure that the interrupt service program 
does not alter the context of the interrupted program. 
Therefore, the CPU registers needed by the service 
routine are stored in the stack, this may be an automatic 
hardware facility or may be performed by the interrupt 
handler software. 

(4) When	 the interrupt service program is complete, 
the context of the interrupted program is restored 
(by restoring the contents of registers saved in the stack) 
and control is returned to the interrupted program by 
restoring the contents of the status register and the pro-
gram-counter. Also, interrupts are re-enabled if this has 
not already been done as part of the interrupt service 
above. 

15.4.8 Input/output 

The role of the input/output subsystem is to interface the 
computer to external logic devices. There are several ways 
of controlling input and output. Normally, data are input 
or output under program control at prescribed points in a 
program. In an event-driven environment, data can be input 
or output in response to an interrupt under the control of 
an interrupt service program. However, in both cases, the 
speed of data transfer is governed by the interface logic 
and by the speed of the input/output control program 
which executes in the CPU. In high-speed applications the 
restrictions due to the control program can be removed if 
the external logic circuits can access the immediate-access 
memory directly using a suitable access mechanism and 
input/output protocol. 

15.4.8.1 Program controlled input/output 

There are two commonly used methods for connecting 
input and output systems to a processor for program or 
interrupt controlled input/output. The most elegant techni-
que treats all input and output ports as if they were memory 
registers in the memory unit. The input and output ports are 
connected to the address, data and control bus structures as 
if they were memory elements and are designed to operate 
to the same electrical and functional specification as a mem-
ory register. Data can then be output using a memory refer-
ence `write' instruction at the output address, or input using 
a memory reference `read' instruction at the input address. 
This method, which is known as memory-mapped input/output, 
is used in a wide range of processors. It gives fast input and 
output and is compatible with other software data-transfer 
instructions. 

An alternative approach connects all inputs and outputs 
to a separate input/output bus structure which normally 
consists of a limited number of address lines and the usual 
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control signals. In bus-orientated systems a subset of the 
memory address lines is used and an additional memory or 
input/output discriminator signal (M0/IO) is used to gener-
ate unambiguous addresses. Input/output-mapped input/ 
output is not compatible with memory reference operations 
and special instructions such as IN or OUT are often used 
to distinguish this mode of operation. 

Serial communications are usually interfaced using a 
universal asynchronous receiver and transmitter device 
(USART) which contains a serial-to-parallel receiver buffer, 
a parallel-to-serial transmitter buffer, a mode control regis-
ter, and a status register which indicates valid communica-
tions. The data, control, and status register are accessed 
using either memory-mapped or input±output mapped 
techniques according to the architecture of the processor. 

15.4.8.2 Interrupt-driven input/output 

An interrupt can be used to force a processor to suspend its 
current task and execute an interrupt service program, as 
described in Section 15.4.7. Interrupt driven input/output 
is implemented by connecting the control logic of the exter-
nal device to an interrupt line so that the device can demand 
the CPU's attention. Following the generation of an inter-
rupt, the CPU is forced to respond immediately and execute 
a program which services the input or output requirements 
of the interrupting device. Interrupt-driven input/output 
maximises the utilisation of the external device, but causes 
suspension of the current task. Interrupt-driven input/out-
put is commonly used to interface intermittent inputs such 
as keyboards. However, in some embedded applications it is 
undesirable to interrupt an executing task, and the preferred 
approach is to regularly inspect (or poll) an external device 
for the availability of an input. 

15.4.8.3 Direct memory access 

The use of direct memory access (DMA) allows an external 
device to transmit data directly into the computer memory 
without involving the CPU. The CPU is provided with con-
trol facilities which allow the DMA controller (external to 
the CPU) to gain control of the CPU data bus. The DMA 
controller must provide a memory address, the data, and 
bus control signals to effect a data transfer. The DMA con-
troller then transfers data directly over the bus to or from 
the memory. DMA transfers are commonly used to send 
blocks of data, rather than individual items of data, 
between backing stores or peripheral devices and memory. 
The controller contains a counter to increment the memory 
address and count the number of transfers made within the 
data block. The DMA process is also referred to as cycle-
stealing, since it proceeds simultaneously with program 
execution, the only effect being that the instruction execu-
tion time is increased by the number of memory cycles used 
when a transfer is in progress. 

The relative merits of DMA over other means of input/ 
output is that it is fast, uses the minimum amount of 
computer time per data word transferred and operates 
autonomously. The loss of instruction execution time is 
not usually significant unless a very large number of devices 
are under DMA control. The major disadvantage of DMA 
is that the computer program is not explicitly aware of 
changes in data or the completion of a DMA transfer and 
it is usually necessary to make the DMA controller invoke 
an interrupt to inform the CPU that a data block transfer is 
complete. 

15.4.9 Microprocessors 

Advances in microelectronics and computing science have 
provided the technologies necessary to construct the com-
plete central processing unit of a computer on a single inte-
grated circuit; this device was called a microprocessor. The 
microprocessor, which was developed in 1971, realised a step 
change in the cost, performance, power consumption and 
reliability of a minimum computer system. Further advances 
in VLSI design led to the development of integrated circuits 
containing both the CPU and the memory unit; the so-called 
single chip computer. In effect, these advances had resulted 
in the miniaturisation of the computer. 

The microprocessor can also be viewed as an advanced 
programmable logic device. Special microprocessors and 
other advanced programmable systems have been devel-
oped to carry out specific computational functions. These 
processors are often designed to work in conjunction with 
a general CPU and are known as co-processors. A number 
of devices such as fast floating-point arithmetic units, com-
munication or local area network co-processors, and multi-
media units such as audio processors and graphics and 
video display generators, are available and can be used in 
the design of powerful processor architectures. To prevent 
such high-bandwidth processing elements making signifi-
cant demands on immediate-access memory, they are often 
provided with separate application-specific memories as in 
the case of video display subsystems. A typical system archi-
tecture of this type is shown in Figure 15.12 which illustrates 
the use of programmable systems including microprocessors 
in the design of an advanced information processing system. 

15.5 Processor instruction sets 

Most general-purpose computers or microprocessors are 
designed to execute sequences of instructions or more com-
plex programs of instructions which prescribe the actions 
necessary to input, store, and process data, and output com-
puted results. The instruction set of a processor defines the 
machine code operations, which the processor can perform. 
However, the range of instructions available with a particu-
lar processor depends to a considerable extent on the design 
objectives of the particular manufacturer. The range and 
capability of the instruction set provided may have a con-
siderable influence on the choice of a computer for a parti-
cular application task. 

15.5.1 Types of instruction 

Although there is no standardisation of computer instruc-
tions, most processors provide primitive operations or 
instructions for the following. 

15.5.1.1 Program flow control 

The sequence in which instructions are executed is defined 
implicitly by the program which comprises an ordered 
list of instructions held in successive memory locations. 
Unconditional branch or jump instructions can be used to 
jump to a program in another part of memory. Also, repeti-
tive or loop structures can be formed by jumping back to 
an instruction which has already been processed. However, 
the true power of a programmable system is provided by 
conditional instructions. The flags in the status register can 
be used as qualifiers for conditional branches, either on 
their own, as in `branch if zero', or in combinations as in 
`branch if greater than' or `branch if less than or equal'. 
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Figure 15.12 A multiprocessor system architecture 

When computing decisions (selecting between alternative 
sequences of code) conditional branch or jump instructions 
are used to determine whether to continue the present 
sequence or jump to the start of an alternative sequence. 
Similarly, conditional jumps can be used to form condi-
tional exits from repetitive structures. 

Although most processors are unable to implement 
directly the flow control constructs found in high-level pro-
gramming languages, the implicit sequence, unconditional 
branch and conditional branch instructions form the primi-
tives from which constructs such as `if-then-else', `while-do', 
and `repeat-until' can be formed. 

15.5.1.2 Data-flow including input and output 

Data-transfer instructions, such as MOVE, can be used to 
input external data to a CPU data register or an immediate-
access memory register, to transfer data between such regis-
ters, and to output data from such registers to the outside 
world. Although these instructions do not necessarily make 
use of the ALU and may not alter the status register, they 
can be classed as data processing instructions in the sense 
that they assign values to the variables (registers). 

15.5.1.3 Data-processing instructions involving the ALU 

Most processors provide a range of arithmetic instructions 
including addition, subtraction, multiplication and division. 
These instructions are used in mathematical applications 
including the data `sorting' operations used in data base 
applications. Simple processors often implement these 
operations using two's complement integer arithmetic. 
More complex algorithms involving floating point arith-
metic can be programmed using these primitive operations. 
However, these programs often make intensive use of the 
processor and are relatively slow and it is common 
to enhance the performance of such processors by adding 
arithmetic co-processors. More advanced processors have 
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and data bus 
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powerful built-in arithmetic capabilities including floating 
point arithmetic units. 

Most processors can also implement logic operations 
such as NOT, AND, OR, and EXCLUSIVE OR (XOR) 
which are implemented `bit-wise' by performing the opera-
tion simultaneously on each corresponding pair of bits in 
the operands. These operations are used to perform the 
`compare' or `find' operations used in database applica-
tions. Many processors can also implement shift/rotate 
instructions which involve moving all the bits in a computer 
word either to the right or the left. There are several pos-
sible form of shift, such as arithmetic and logical shifts and 
logical rotations. (Few conventional high-level languages 
give direct access to primitives for physical bit-level mani-
pulation.) 

15.5.1.4 Machine control 

These instructions control the mode of operation of the 
processor. Many machine control instructions, such as 
START/RESTART, HALT, STOP have a profound influ-
ence on the behaviour of the processor. Similarly, in event 
driven systems, machine control instructions such as 
INTERRUPT ENABLE/DISABLE and interrupt priority 
control instructions affect the ability of the processor to 
respond to external stimuli. Therefore, some processors 
classify certain machine control instructions as `privileged 
instructions' which can only be used if the processor is in a 
special `systems' or `supervisor' mode that is used by systems 
programmers. (Few conventional high-level programming 
languages give direct access to machine-level primitives for 
machine or interrupt control.) 

15.5.2 Data objects and data types 

At machine level textual, numerical and logical information 
is represented by codes of binary digits and the processor in 
not able to infer the context of any particular binary data 
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object. Thus, the concept of data typing, in the high-level 
sense, does not exist at machine level. 

A processor handles such data in terms of the contents of  
registers. Thus low-level primitive instructions transfer and 
process data by reference to the architecture and registers 
of the processor, such as input/output device registers, CPU 
data registers and/or accumulators, and immediate-access 
memory registers. Data typing at machine level is restricted 
to specifying the length of a data object. Most low-level 
assembly languages provide assembler directives which 
allow the programmer to declare data objects by length, 
assign symbolic names (identifiers) to the objects, and 
provide initialising values for variables. When an assembly 
language source program is translated into machine code, 
the assembler enforces the data-type rules on the usage of 
the declared data objects and allocates storage space at 
machine level for all data objects. 

Although limiting, low-level data types provide the build-
ing blocks for accommodating (storing and processing) the 
more complex data types normally associated with high-
level programming languages. However, the efficient use of 
high-level data types also depends on the availability of suit-
able addressing mechanisms for accessing data objects. 

15.5.3 Instruction formats 

Each computer instruction is stored in memory as binary 
numbers and can be considered to comprise a number of 
fields: 

(1)	 Operation code (op-code): this part of the instruction 
identifies the type of operation which is to be performed 
(such as `add' or `jump'), the number and addressing 
mode of the operands, and the addressing mode of the 
resultand (if any). 

(2)	 Operand field: this specifies either an immediate data 
value (if immediate addressing) or the address of the 
operand on which the instruction operation is to be 
performed. The processor's data memory reference 
mechanism will use the address information in conjunc-
tion with the addressing mode to compute the effective 
address (physical address) of the operand. 

(3)	 Resultand field: this specifies the address of the result-
and (corresponding to the addressing mode used). In 
some processors, the resultand address is, by default, 
the same as that of one of the operands, and when the 
instruction is executed the resultand overwrites the 
operand concerned. 

The format of a typical instruction, such as ADD, for a 
memory-to-memory architecture processor in which the 
operands and resultands reside in immediate access memory 
is shown in Figure 15.13. This type of instruction format has 
the potential to generate multi-word instructions. For 
example, a 16-bit microprocessor may have a 16-bit op-code 
and either a 16, 20, 24 or 32 bit memory addressing 
capability. The resulting instruction would be long and the 
corresponding instruction fetch would require many memory 
reference operations, which is inefficient. Many CPU archi-
tectures force the resultand to overwrite one of the oper-
ands, this gives some gain in efficiency since the resultand 
address is, implicitly, the same as one of the operands. The 
format of a typical instruction of this type is shown in 
Figure 15.14. 

In practice, many processors have a register-to-register 
architecture where the operands and resultands are stored 
in CPU data registers, which being few in number can be 

Figure 15.13 Instruction formatÐexplicit resultand 

Figure 15.14 Instruction formatÐimplicit resultand 

addressed using very short direct addresses. This gives 
some gain in efficiency, although separate MOVE instruc-
tions are required to load data from memory into the CPU 
registers (the LOAD operations) and to return results to 
memory (the STORE operation). The so-called LOAD-
STORE architecture, or register-to-register architecture 
processor, is the default architecture for modern reduced 
instruction set (RISC) processors. These processors commonly 
have  a CPU  register  file comprising 32 general-purpose  
32-bits registers that can act as source registers for 
operands and accumulators for resultands. 

15.5.4 Addressing data objects 

During the execution of an instruction, operands are 
fetched from the addresses indicated in the operand field of 
the instruction, and resultands are returned to the address 
shown in the resultand field of the instruction. A number of 
different methods of addressing operands have been devel-
oped. These address modes are used to introduce flexibility 
by decoupling the logical address from the physical address, 
to extend the address range of the memory that can be 
accessed from an instruction, and to provide support at a 
primitive level for the addressing mechanisms required in 
advanced data structures. The data-memory reference sys-
tem is used to generate the physical address of a data object 
from knowledge of the addressing mode and the values in 
the operand field of the instruction and any associated 
address registers. 

The address modes commonly encountered for accessing 
operands are as follows. 

15.5.4.1 Immediate addressing 

In this mode, the actual value of the operand is included in 
the instruction, i.e. the operand address field is a literal. 
This allows rapid access to the operand, but the value of 
the operand is fixed by the program code. The operand 
may be a data object, such as an integer constant, or an 
address object. Typically, it is used to load small integer 
constants into a register. (To avoid repeatedly using 
immediate addressing to load the commonly used value 
zero into CPU registers, many RISC processors have one 
CPU `register' permanently hardwired to the value zero.) 

15.5.4.2 Direct addressing 

In this mode the value in the operand address field is the 
address of the operand. There are two main variants of  
direct addressing. In CPU register direct addressing the 
address of the CPU register is given, as an explicit value, 
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in the address field of the instruction. Since most CPUs 
have a small number of CPU registers, the address field 
is restricted and this allows single word instructions. CPU 
Register direct addressing is fast because the instruction is 
short and the operands are already held in the CPU. It is 
used extensively in register-to-register architecture proces-
sors, including RISC processors. In memory direct address-
ing the immediate access memory address of the operand 
is given, as an explicit value, in the address field of the 
instruction. In limited-word-length computers this means 
that only a small area of memory can be assessed directly. 
Also, this addressing mode is inflexible because the 
address is embedded in the program code. It is 
commonly used to access address constants, such as 
input/output ports. 

15.5.4.3 Indirect addressing 

In this mode, the operand field of the instruction identifies 
an address register (usually a CPU register) which holds the 
address of the operand. The address register must be initial-
ised before use. In effect, the address-register acts as a 
`pointer' to the operand. This removes the need for the 
instruction to specify the absolute address, which introduces 
flexibility. It also allows the operand to be accessed by a 
one-word instruction. If the address register has accumula-
tor capabilities and can participate in arithmetic operations, 
then the indirect address or pointer can be manipulated to 
give access to complex data structures. For example, the 
indirect address could be incremented during successive 
passes through a loop of instructions. 

Some processors have special mechanisms which allow an 
indirect register to be decremented or incremented immedi-
ately before use (e.g. pre-decrement) or immediately follow-
ing use (e.g. post-increment). Such pointers can be used as 
stack pointers which are automatically updated to point to 
the `top-of-stack' following a PUSH or POP operation. 

15.5.4.4 Indexed addressing 

Indexing is used to address sequential data structures. The 
effective address of a data object in the structure is formed 
from the sum of two components; the address of (the start 
of) the data structure and the index or offset of the object 
relative to the start of the structure. The data-memory refer-
ence mechanism computes the effective address as the 
instruction is executed. 

Indexed addressing is normally implemented using two 
CPU registers. An address-register is used (as in indirect 
addressing) to point to the start of the data structure (the 
address of the first object the structure) and a second regis-
ter, known as the index register, holds the offset address of 
the data object. The index register usually has an accumula-
tor capability such that the index can be readily modified or 
incremented. Modern processors often have a number of 
address registers which can be used as pointers to data 
structures and a number of index registers. An indexed 
addressing instruction for such a processor would specify 
both the pointer and index register. 

15.5.4.5 Base and (relative) offset addressing 

In this system of addressing, an address register is used as a 
`base pointer' and points to the segment of memory allo-
cated to the data associated with a program. All references 
to data objects are made relative to the base address. The 
data memory reference mechanism automatically adds the 
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base address of data segment when calculating the effective 
address of a data object. Thus, in this system, direct 
addresses, indirect address, and indexed addresses are 
assumed to be relative to the base address. Thus all relative 
addresses associated with the operand data can be calcu-
lated when the program is compiled or assembled and do 
not require further alteration when the program is located. 
This has the significant advantage that, as far as references 
to data objects are concerned, the data segment can be 
relocated easily because the executable program code 
remains unchanged and only the value of the base pointer has 
to be altered. 

15.5.5 Addressing program code 

The program-counter points to the location of the current 
instruction and is incremented as each instruction is 
executed in sequence. However, the value in the program-
counter is overwritten during unconditional and con-
ditional branch or jump instructions. In effect, the operand 
of branch and jump instructions may modify the value of  
the program counter. Branch and jump instructions employ 
a variety of addressing modes: 

15.5.5.1 Direct addressing 

The value in the operand field of the instruction is the desti-
nation address of the branch or jump. 

15.5.5.2 Indirect addressing 

The operand field of the instruction identifies an address-
register which holds the destination address of the branch 
or jump. 

15.5.5.3 Relative addressing 

The value in the operand field is interpreted as a positive or 
negative binary number which is added to the current con-
tents of the program-counter to determine the destination 
address of the branch or jump. This is usually quite efficient 
because most destination addresses will be fairly close to the 
instruction being executed. Since the offset of the relative 
address is independent of the location of the code, the offset 
can be determined as a constant when the program is 
assembled or compiled and does not need to be altered 
when the program is located. This has the significant advan-
tage that, as far as references to code locations are 
concerned, the executable program code can be relocated 
and only the initial value of the program counter has to be 
changed. 

15.6 Program structures 

Certain program structures occur so frequently in program 
design that it is worth looking at methods for implementing 
them both at high-level and at assembly or machine level. 
The implementations use both unconditional and condi-
tional jumps. 

15.6.1 Selection 

The `if-then-else' selective construct is used to select between 
two alternative instructions (or processes). This high-level 



//integras/b&h/Eer/Final_06-09-02/eerc015

15/18 Microprocessors 

construct specifies the alternative processes and the condi-
tions under which they can be executed, for example: 

if x > 0 then P1 else P2; 

The decision part of this construct is implemented at 
machine level by two distinct instructions: 

(1) the	 evaluation of the conditional expression, which 
must be a relational operation that returns a Boolean 
result. When this is computed, the result is reflected by 
the setting or resetting of one or more flags in the ALU 
status register. 

(2) the conditional branch which uses the relevant flags in 
the status register as operands. When the conditional 
branch instruction is executed it passes program flow 
control to the selected process (i.e. if the condition is 
true then branch to P1 else continue with P2). Note 
that in the low level implementation an unconditional 
branch instruction has to be inserted at the end of the 
`else process' P2 to allow both alternative processes to be 
stored in sequential memory, as shown in Figure 15.15. 

15.6.2 Repetition 

Consider a process which must be executed several times. If 
the number of iterations is known, then a `for' loop would 
be indicated; otherwise the loop structure could be imple-
mented using either as a `while . . . do' or a `repeat . . . until' 
construct. The `repeat . . . until' construct should be used if 
the process is to be executed at least once, otherwise the 
`while . . . do' construct, which allows the possibility of an 
exit before the process is executed, should be used. Since both 
the `for' and `repeat . . . until' constructs can be derived from 
the `while . . . do' construct, the `while . . . do' construct is 

the primitive and is found in all high-level sequential and 
concurrent programming languages. 

15.6.2.1 `Repeat-until' construct 

This repetitive construct allows a process to be executed at 
least once. The number of times the process is executed 
depends on a value of a control variable, for example: 

count : �(number; 
repeat 

P1 
until count <& 0 do ;  

where the process P1 must update the loop control variable, 
as in: 

count : �(count �1; 

Implementation of the `repeat-until' construct at low-
level requires an explicit loop control mechanism, with initi-
alisation and termination phases. The `repeat-until' 
construct tests the exit condition at the end of the loop 
as shown in Figure 15.16. 

15.6.2.2 `While-do' construct 

This construct provides for a process not to be executed, or 
to be executed one or more times. The number of times the 
process is executed depends on a value of a control variable, 
for example: 

count : �(number; 
while count >&�(0 do  

P1; 

Figure 15.15 `If-then-else' construct	 Figure 15.16 `Repeat-until' construct 
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where the process P1 must update the loop control variable, 
as in: 

count : �(count �1; 

Implementation of the `while-do' construct at low-level 
requires an explicit loop control mechanism, with initial-
isation and termination phases. The terminating condition 
must be evaluated at the start of the loop. The general form 
of the `while-do' construct is shown in Figure 15.17. 

15.7	 Reduced instruction set computers 
(RISC) 

15.7.1	 The reduced instruction set concept 

The evolution in processor design during the 1980s and 
early 1990s led to increasingly complex processor architec-
tures. The emerging 32-bit architectures accommodated a 
good range of data types and a wide range of instruction 
types and addressing modes. In addition, the flexible 
instructions often allowed the user a free choice of the 
addressing mode for the operands which resulted in many 
permutations of (variable-length) instructions. Such pro-
cessors were characterised by the complexity of their 
instruction sets, the complex sequences necessary to `fetch' 
the variable-length instructions, and the complex and very large 
instruction-decode logic. These processors were known as 
complex instruction set computers (CISC) processors. 

Analysis of the actual use of these processors showed that 
the instruction set complexity often exceeded the needs of 
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many applications. Many users simply preferred to use a 
familiar and well understood subset of the data types, 
addressing modes, and instructions. In addition, it was 
found that common programming constructs, such as con-
ditional expressions, were often formed using simple rela-
tional operations, such as `equals' and simple and short 
constants, such as `zero'. Similarly, program branches 
often had a short relative offset that could be accommo-
dated using short (16-bit) relative addressing. This led to 
the notion of developing high-performance processors with 
a reduced set of appropriate instructions. 

15.7.2	 The reduced instruction set (RISC) processor 

The reduced instruction set computer (RISC) processor has 
a relatively simple register-to-register architecture which 
focuses on a CPU register file of, say, 32 general purpose 
32-bit registers. Each register may hold data or addresses 
and can provide source operands and/or act as an accumu-
lator for resultands. Since data can not be transferred 
directly between immediate-access memory and the ALU, 
simple data transfer (LOAD) instructions are used to trans-
fer operand data from immediate-access memory to CPU 
registers so that it can be processed subsequently by the 
ALU. Similarly, simple data transfer (STORE) instructions 
must be used to transfer result data from CPU registers to 
immediate-access memory. Thus, if X, Y, and Z are stored 
in immediate-access memory, the high level expression 
X: �(Y �Z must be implemented using four separate 
instructions. 

R1: �(Y LOAD operation, load CPU register R1 
with Y from memory 

R2 �(Z LOAD operation, load CPU register R2 
with Z from memory 

R3 �(R1 �R2 ALU operation, write into CPU register R3 
sum R1 �R2 

X: �(R3 STORE operation, store CPU register R1 
as X in memory. 

The apparent disadvantage of using four low-level instruc-
tions to implement one higher-level memory-to-memory 
instruction is partially offset by the simple format of the 
RISC instructions. Register-to-register architecture pro-
cessors have relatively short instructions since there is at 
most only one immediate-access memory reference opera-
tion (to load or store an operand) per instruction. This 
leads to the notion of using fixed-length instructions. A 
typical 32-bit RISC processor with 32 CPU registers will 
use a 32-bit fixed length instruction with, say, a 6-bit 
op-code, 5-bit direct addressing of CPU registers, and 
relative (base and offset) addressing of immediate-access 
memory using 16-bit relative addresses or immediate data. 
Thus LOAD and STORE instructions may consist of the 
6-bit op-code, a 5-bit CPU register address for the operand 
or resultand, and an immediate-access memory address 
comprising a 5-bit base (register) address and a 16-bit rela-
tive offset. Similarly, an ALU instruction may comprise 
the 6-bit op-code, and either three 5-bit CPU register 
addresses (plus scope for instruction extensions), or two 
5-bit CPU register addresses and a 16-bit immediate-data 
object. The use of a 32-bit instruction, which can be 
`fetched' in a single memory reference operation, results 
in a fast instruction cycle and much simplified instruction 
decoder logic. The performance of RISC processors is 
further enhanced by the use of multi-stage instruction-
pipelines. 
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Figure 15.18 Simplified instruction pipeline 

15.7.3 Instruction pipelines 

The conventional instruction `fetch' and `execute' cycle 
imposes speed constraints on a processor. The primary pro-
blem is the time taken to access immediate-access memory, 
both to `fetch' the instruction and to read operands during 
LOAD instructions, or to write operands during STORE 
instructions. In each case the processor ALU is idle (not 
processing data) while the memory reference operation is 
taking place. This limitation can be overcome, to a large 
extent, by the notion of pipelining. 

The basic idea of pipelining is to partition the processor 
into autonomous operational or functional units that can 
operate concurrently, (such as instruction `fetch' from 
immediate-access memory, program counter update, CPU 
register-file read, ALU operation, write operation on 
immediate-access data memory, read operation on immedi-
ate-access memory read, CPU register-file write). Typically, 
this allows the process of `fetching', decoding and executing 
an instruction to be split into the following stages. 

(1) Instruction `fetch' and program counter update. 
(2) Operand read from CPU register file. 
(3) ALU	 operation or effective address calculation (for 

LOAD and STORE). 
(4) Immediate-access	 data memory read (for LOAD) 

or write (for STORE). 
(5) Resultand (ALU operations) or operand (for LOAD) 

write to CPU register file. 

In effect, the traditional instruction register is replaced by a 
pipeline of instruction buffers each of which store the infor-
mation (opcode, CPU register addresses, memory reference 
address, operands, resultands, ALU status) necessary to 
carry out subsequent phases of the instruction cycle for 
each instruction, Figure 15.18. Thus, such a pipeline will 
normally contain five sequential instructions, and each 
stage of the pipeline will have the information and resources 
required to autonomously implement its stage of the 
instruction cycle. In addition, each stage includes at most 

one immediate-access memory reference operation, thus 
allowing fast (average) instruction throughput. 

In practice, the pipeline speed-up is restricted by physical 
resource constraints (resource hazards) and temporal 
data access constraints (data hazards). For example, if the 
instruction memory and data memory share the same 
address and data bus (as in von Neumann architecture pro-
cessors), then an immediate-access data memory reference 
operation for an instruction in stage (4) of the above pipe-
line can not take place concurrently with the instruction 
`fetch' operation for a successor instruction in stage (1) of 
the pipeline, and a resource hazard occurs. This results in 
the need to stall the pipeline (with respect to the successor 
instructions) until the data buses are free. This problem can 
be overcome at some cost by adding resources, such as sepa-
rate instruction and data memories (as in Havard architec-
ture processors). Data hazards typically occur when an 
instruction attempts to use the results of a preceding 
instruction, but due to pipelining the results are unavailable. 
For example, the results of the preceding instruction in the 
pipeline may still be being computed or may not have been 
written back into the CPU register file at the point at which 
they are required as operands by the successor instruction. 
Such problems can be solved either by invoking pipeline 
stalls or by designing additional fast-track data paths 
which make results available direct from the ALU. Data 
hazards may occur in sequences of data processing opera-
tions, or in flow control operations when branches may be 
conditional on data generated by previous instructions. 

A related problem affecting the performance of pipelined 
processors arises when computing decisions, such as 
IF-THEN-ELSE constructs, that involve alternative 
sequences. The instruction pipeline usually operates on the 
assumption that the instructions form a natural sequence, 
and no allowance is made for the presence of alternative 
sequences. Consequently, when the condition governing 
the branch-decision is computed (in stage (4) of the above 
pipeline), presumed-sequence instructions are already being 
processed in stages (1), (2) and (3) of the pipeline. If the 
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branch is taken, the presumed-sequence instructions have 
to be deleted (or `flushed') from the pipeline and the `branch-
taken' instructions `fetched' and processed. 

Modern RISC processors use many techniques to over-
come these performance restrictions. Multi-stage pipelines 
may be used (up to 20 stages) to maximise concurrency. 
Multiple pipelines may be used to accommodate both of 
the alternative sequences for a decision, and this removes 
the delay associated with flushing and re-filling a pipeline. 
Persistent data (regularly used data objects) may be main-
tained in the CPU register file to reduce the need for multiple 
LOAD and STORE operations. First and second level high-
speed access cache memories may be used for instructions 
and data to overcome the delay associated with accessing 
immediate-access memory. In all cases, the processor design 
process involves compromise between performance, com-
plexity and cost. General purpose microprocessors 
and workstations often seek to maximise performance. 
Alternatively, in embedded applications, performance and 
complexity are often costly in terms of silicon area or 
`real estate'. In an interesting development, proprietary 
embedded RISC processors are now available in a range of 
variants so that the designer can choose the level of perfor-
mance, complexity, word length, and silicon area. 

15.8 Software design 

The process of software development involves turning the 
specification of the task to be performed into a program in 
a form which the processor can directly execute. The start-
ing point for the design of such a system is the derivation 
of the system requirements specification. The specification 
should state what the system should do in a formal and 
precise manner. However, the requirements specification 
should not state how the task should be carried out or how 
it should be implemented. 

The design procedure is normally a `top-down' approach 
in which the requirements specification is translated into a 
design by a process of elaboration. The description of what 
the system should do is elaborated until the description 
comprises a set of easily implemented activities. In most 
design methods, the formal system specification will be ana-
lysed and decomposed on a functional basis. Careful con-
sideration should be given to determining when to take 
decisions that bind or constrain the design, such as the 
choice of programming notation or processing architecture. 

The design procedure often consists of a compromise 
between taking an early decision to map the problem onto 
a known implementation, such as a particular high-perfor-
mance architecture, or delaying such decisions to retain the 
freedom of choice in design and implementation. It is desir-
able that the process of analysis is not subject to imple-
mentation constraints before the analysis has revealed the 
characteristics of the problem. This is particularly import-
ant if the designer is to exploit fully the advantages that can 
be obtained by using modern programming notations and 
processing hardware. 

In applications which involve safety functions or have 
implications for safety, the system must perform in a reli-
able and safe manner. Ideally, the designer should prove the 
correctness of the design and the design should be trans-
lated into an implementation using proven translators. 
Finally, the implementation should be verified to show 
that it is fit for its intended use. However, current formal 
proof techniques require high levels of skill; they are also 
lengthy and are not efficient for complex systems. 

15.8.1 Program development 

The design and development of the computer programs or 
software is not a trivial task. Even a relatively simple pro-
gram can have a sophisticated logical structure. Large soft-
ware systems can have considerable complexity and special 
software engineering and management techniques have 
been developed to ensure that such systems can be designed 
and developed to the required quality within a specified 
time-scale and budget. The methods place considerable 
emphasis on the need to document relevant aspects of a 
system design including the test phase, they also address 
the important problem of maintaining a system throughout 
its lifecycle. They also provide a range of computer-aided 
software engineering tools to support the design activity. 

Good software design techniques, such as structured 
programming, are used to produce readable, reliable and 
understandable programs. A restricted set of programming 
constructs or processes is allowed: sequential processes, 
selection, and repetition (see Section 15.6). Each such pro-
cess has a single input and output and can be readily docu-
mented, tested and understood. Complex processes can be 
decomposed into a hierarchy of simpler sub-processes, each 
of which can be declared as subprograms or procedures to 
hide unnecessary detail. This improves the legibility of a 
program and helps the problem of managing complexity. 

The structured programming approach leads naturally to 
a modular approach to program construction. The program 
is divided into modules, each comprising separate code and 
data. The data within any module is local to that module 
and communication between the modules has to be declared 
and is strictly controlled. This limits the interaction between 
modules and helps prevent error migration. It also 
encourages the documentation of module interfaces and 
inter-module actions; an understanding of this is essential 
when a program is modified. 

15.8.2 Assembly languages 

Programming languages may be either high-level and 
oriented to the solution of a particular class of problems, 
or low-level and oriented towards the architecture of a 
particular machine. 

Assembly-language allows the designer to program in 
terms of the machine instructions that a specific processor 
can perform. Since binary machine-code instructions are 
difficult to understand directly, assembly-language pro-
grams are expressed in a symbolic notation. There is a one-
to-one correspondence between each assembly-language 
instruction and a machine-code instruction. 

Assembly-language programs have to be written in terms 
of the specific processor's instruction set and architecture, 
such as its CPU registers, memory locations, and input/out-
put device registers. Also, memory storage has to be allo-
cated explicitly for data objects using primitive data types. 
Assembly-language uses mnemonics for each machine level 
instruction. The mnemonics are usually specific to one pro-
cessor or a family of processors and are chosen such that 
the function of the instruction is fairly obvious (e.g. ADD, 
SUB, MOV, etc.). In addition, the user has to define sym-
bolic names for data objects such as variables (memory 
addresses), data constants, and labels (code locations). 

The low-level code is translated into machine-code by a 
simple process of transliteration, this is usually carried out 
by a program known as an assembler. The assembler checks 
the syntax and usage of each of the instructions in the 
source text (the `source code'), and produces cross-refer-
ences for any jump, branch, or data access instructions. 
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The output of the assembler (the `object code') can then be 
`linked' with any library routines or external subroutines 
which are called from the program, and `located' by insert-
ing into the file the absolute addresses of the memory loca-
tions where the program code and data will loaded in the 
target system. 

The unstructured nature of assembly-language programs 
increases the problem of testing such software. It is made 
even more difficult because testing conventionally takes 
place at machine level, rather than at the level of the sym-
bolic assembly language. Normally, the software is executed 
on simulator, or on a target processor equipped with moni-
tor program, with facilities for memory and CPU register 
examination, and for the insertion of breakpoints which 
allow the programmer to inspect and change memory or 
register contents at specified points in the program. Such 
testing requires skill, care and good management if it is to 
produce usable results. 

Assembly-language programming, which requires a 
detailed understanding of instruction sets and processor 
architecture, is normally only necessary in applications 
where it is critical that the processing models and program-
ming constructs used in the design are supported properly 
at machine level. Typical examples are compilers, the 
kernels of operating systems, interface software including 
interrupt handling, and certain aspects of real-time soft-
ware. This is the province of the `systems programmer' 
rather than the `applications programmer'. 

Knowledge of assembly language programming is 
not essential for general applications programming. 
Specifically, due to the lack of high-level constructs, assem-
bly-language programs normally comprise an intimate 
mix of low-level program flow-control instructions and 
architecture-dependent data-processing instructions. Such 
programs are often difficult to design or comprehend. Thus, 
a programmer is advised to always use the highest level 
programming language appropriate for an application. 

15.8.3 High-level languages 

Instead of writing the programs in the assembly language of  
a processor, a high-level language can be used. The advan-
tages to writing programs in a high-level language are as 
follows: 

(1)	 Hardware independence: the language is independent of 
the implementation hardware and can be compiled for a 
range of target processor. 

(2)	 High-level notation: the language comprises unambigu-
ous statements which are often close to those used to 
express problems in natural language. This aids com-
prehension and increases the speed of programming. 

(3)	 Structured code: most high-level languages support 
structured programming and modular program con-
struction. 

(4)	 Data types: most high level languages support a wide 
range of data types which allow checks on expression 
validity to be applied by the compiler. 

(5)	 Maintenance: clear program and data structures give 
easier program maintenance. 

Few conventional high-level languages give direct access 
to machine-level primitives that are used for physical input 
and output, bit-level manipulation, machine control, and 
interrupts. Therefore, programs written in conventional 
high-level languages are normally restricted to using idealised 
input and output (e.g. to files) and are run in a protected 
environment provided by the operating system. However, 
this is not always sufficient for `systems' programmers 

who are concerned with how the software, including the 
operating system and user programs, operates and performs 
and how it interfaces with the outside world. Thus, the pro-
gramming languages used by systems programmers, such as 
`C', typically include both high-level constructs and 
machine-level primitives. 

A high-level language program is prepared as a source 
text file using a text editor (or using a word processing 
facility capable of producing a text file in the required 
format). The high-level language program is translated 
into an object program (i.e. nearly executable machine 
code) by a compiler. At the start of the compilation pro-
cess, the compiler will check the syntax of the source 
program and any errors detected will be reported. During 
the compilation process, each construct or statement in the 
source program is translated into one or more lines of 
object code. The compiler may require several passes to 
convert the source program into the object code. Also, 
error checking may be included within the object code 
to detect run-time errors, such as array bounds exceeding 
predefined limits. 

The compiler must be informed of the identity of the 
processor on which the compiled program is to run, so that 
it can produce processor-specific object code. Normally, 
the object code is generated for the processor on which 
the compiler runs. However, in the case of microprocessor 
systems, it is common to prepare programs on larger com-
puters with better software engineering support facilities 
and to compile the source program for the intended target 
processor (this is known as cross-compilation). 

The object code produced by the compiler requires 
linking, locating and loading before it can be executed, 

Figure 15.19 Stages in program development 
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as shown in Figure 15.19. The linker resolves all external 
references in the object code, such as references to library 
subroutines or other program modules held as object files, 
and combines all these modules into a single executable 
program. It also locates the program by adjusting the 
addresses all data memory references (variables) and code 
location references (labels) to the values of locations at 
which the code and data will be loaded. (In the case of 
relocatable code and data, it simply calculates the correct 
base addresses.) Finally, the linked object modules are 
loaded into memory at a defined location by the loader 
ready for execution. (For ease of communication, the 
object program is often downline loaded into the target 
processor in HEX form, and converted into binary by the 
loader during the loading process.) When the program is 
loaded, it is resident in memory in the target machine 
ready for execution. 

15.8.4 Real-time processes 

Many engineering systems, such as embedded computer 
real-time systems, are required to maintain synchronism 
with an asynchronous external system, or to respond to 
stimuli from such a system, within a finite and specified 
delay. In real-time programming there is a primary need 
for a mechanism for handling the concept of time. Real-
time sequential programming languages include an addi-
tional primitive construct that allows the formal inclusion 
of time. 

An application is said to be `time-critical' if it must per-
form activities and produce responses at times dictated by 
an external environment. Typically in real-time control, a 
precise time-window is specified during which sensors must 
be sampled, a satisfactory control response computed, and 
output values sent to actuators. This schedule may re-occur 
periodically, or be initiated at irregular intervals by stimuli 
from the external system. Failure to perform the required 
functions in time is a fault; this may lead to system failure 
and may be hazardous. 

The software for a time-critical application will comprise 
processes that must be properly synchronised with each 
other and with the external system. Synchronism with the 
external system is usually imposed by a `real-time clock' 
driven schedule; these times will not be dictated by the 
optimum use of computing resources. To ensure that com-
ponent processes do not overrun, it is common to place 
(critical) timing requirements on software execution and 
to provide a `time-out' mechanism to warn of timing 
violations. 

It is conventional to monitor the performance of a time-
critical application process. Traditionally, this is done using 
a real-time time-lapse counter built as an external circuit. 
The counter is preset to trip after a pre-determined time 
and is initiated to run concurrently with the time-critical 
process. The first process to complete causes the other to 
abort. The mechanism is known as a `watch-dog' timer. 

If the application process has been properly designed, it 
will produce results well before the maximum allowed time 
and the `watch-dog' timer will be aborted. The expiry of a 
`watch-dog' timer or `trip' indicates the presence of a fault 
(which may be a software design fault or a transient or 
permanent malfunction of the system) and appropriate 
fault recovery activities should be invoked. It is therefore 
necessary to set the pre-determined trip period to somewhat 
less than the time-critical time so that fault recovery can 
take place and the system can still provide a timely and 
satisfactory response. 

15.8.5 Embedded real-time operating systems (RTOS) 

A number of proprietary real-time operating systems 
(RTOS) are available for use in embedded microprocessor 
systems. These operating systems typically provide input/ 
output handling, deterministic real-time task scheduling, 
watchdog facilities, and default behaviour under fault 
conditions. They are also characterised by having modest 
memory requirements. Significantly, these operating systems 
are targeted at a range of processors including conventional 
microprocessors, commercial off-the-shelf (COTS) micro-
computers, embedded controllers (microprocessors with 
built-in analogue and digital signal acquisition and output 
generation), and the more recently introduced system-on-
chip (SoC) systems with on-chip embedded processors. 

15.9 Embedded systems 

Many products have computers, microprocessors, or micro-
controllers hidden or embedded within them. Some devices, 
such as digital organisers or personal digital assistants 
(PDAs), resemble small computers and the user may be pro-
vided with limited programming facilities for the embedded 
processor. In the case of other products, such as video 
games machines or consoles, it is fairly obvious that the 
device contains embedded processors and video display gen-
erators, even though the user is given little or no facility for 
programming the device. A much wider range of products 
contains embedded processors that are hidden or invisible 
to the user. For example embedded processors 
are commonly found in the following: cellular or mobile 
telephones, automobile electronics (such as engine manage-
ment, braking systems, active suspension, intelligent sensing 
for lights or windscreen wipers, navigation systems, and 
both in-car and in-seat entertainment systems), office auto-
mation products (such as faxes, scanners, printers, copiers 
or duplicators, multimedia display projectors, computer 
network switches), domestic appliances (such as washing 
machines, dishwashers, tumble driers, cookers or ovens, 
microwave cookers, food blenders and processors, weigh 
scales, and vacuum cleaners), home entertainment units 
(such as radios, televisions, satellite receivers, digital 
set-top boxes, video cassette recorders, digital video disc 
(DVD) players, and hi-fi units), photographic equipment 
(such as film and digital cameras, analogue and digital 
video cameras) and personal or `wearable' electronics (such 
as portable radios and CD players, MP3 players, watches, 
and fitness monitors). The trend is to increase significantly 
the sophistication of such systems, including user adapta-
tion or personalisation, and to increase very significantly 
the data handling and processing requirements of the 
embedded processor. This is leading to the development 
of extremely powerful processors that are designed specifi-
cally for embedded applications, including small battery-
powered products. 

15.9.1 Embedded processors 

The designer of embedded systems can choose from a 
wide range of processors. Classical microcontrollers, with 
integrated analogue inputs and outputs, are often used in 
control applications for domestic appliances or automotive 
systems. Specialist microcontrollers have been developed for 
applications such as electric motor control, or servo control. 
Traditional microprocessors or RISC processors may be used 
as stand alone devices within a more complex design. 
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Increasingly, the trend is to minimise the number of com-
ponents in an embedded system. Traditionally, conventional 
microprocessors tend to be poorly suited to integration within, 
say, an FPGA since they are relatively complex and are not 
scalable (i.e. smaller versions can not be readily generated), 
although these constraints may become less important as 
the size of FPGAs increase. RISC processors are much better 
suited to integration because they have powerful ALUs, small 
instruction sets and instruction decoders, and are scalable in 
terms of word-length, concurrent resource, instruction pipe-
line, and clock speed. Embedded RISC processors are readily 
available as intellectual property (IP) cores. 

Traditionally, IP cores have taken the form of hardware 
description language (HDL) software macros, which a 
designer incorporates within an application-specific design. 
However, the performance of such IP cores is layout depend-
ent, and very careful design is necessary to achieve good 
speeds. Therefore, the preferred method of deriving high-
performance designs is to use a proprietary `hard' IP core 
that provides guaranteed performance (i.e. an IP core that 
has been pre-mapped into a fixed and full-tested hardware 
layout on the intended FPGA target). The second advan-
tage of using proprietary `hard' IP core RISC processors is 
that they are usually fully supported by proprietary 
embedded real-time operating system (RTOS) software 
and software tools for writing applications (such as editors 
and compilers). Thus the embedded systems design 
approach typically involves: 

(1) Determining the application's processing requirements 
and selecting a proprietary `hard' IP RISC processor of 
appropriate performance, complexity, word length, and 
silicon area. 

(2) Selecting a proprietary embedded RTOS that supports 
the processor. 

(3) Developing application-specific software for software-
implemented functions. 

(4) Developing digital designs for any hardware-implemen-
ted functions and interfaces. 

Reconfigurable FPGA 

15.9.2 System on chip (SoC) design 

The increase in size of VLSI logic circuits has led to a new 
generation of reconfigurable FPGA devices that provide a 
platform for `hard' IP cores and are large enough to contain 
a complete high-performance digital processing system 
within a chip. These FPGAs are commonly called System 
on Chip (SoC) devices. An SoC device can be configured 
to include both `hard' and `soft' IP cores, plus user-designed 
digital circuits, Figure 15.20. At the heart of most SoC 
designs are an embedded proprietary RISC processor and 
a block of RAM memory (for the software that runs on the 
processor). This allows the designer to partition a design 
into those parts that will be implemented as software 
executing on the embedded processor (under an appropriate 
embedded RTOS) and those parts that will be implemented 
in hardware as high-speed application-specific logic circuits. 
This design approach, known as co-design or co-ware, has 
the significant advantage that established and high-perfor-
mance parts of the design can be committed to application-
specific hardware, and more adventurous parts of the 
design or low-speed functions can be committed to easily 
changed software. 

The high-performance hardware implemented applica-
tion-specific logic circuits may make extensive use of both 
`hard'- and `soft'- IP cores. In particular, SoC devices 
commonly provide co-processor support for digital signal 
processing, typically using a proprietary `hard' IP digital 
signal processor (DSP). Alternatively, specific algorithms 
may be implemented using either `hard'- or `soft'- IP digital 
signal processing circuits. Similarly, signal acquisition may 
be facilitated using mixed-signal (digital/analogue) com-
ponents such as analogue-to-digital (A/D) or digital-
to-analogue (D/A) convertors. The problem of interfacing 
such major components is eased by the on-chip provision 
of advanced data highways or buses, standardised bus 
interfaces (for the major components such as the RISC/ 
DSP processors and the memory), sophisticated clock 
generators, and a clock management unit. 

System 
control, 
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and data bus 
with 
standardised 
interfaces 

‘Hard’-IP 
RISC 
processor 

‘Hard’-IP 
DSP management 

and test 
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Figure 15.20 Typical system-on-chip (SoC) configuration 
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External interfacing is facilitated by the use of `hard' IP 
cores that support a wide range of high-bandwidth interface 
standards (for high-speed serial and parallel interfaces, 
including either system- or source-synchronous parallel 
interfaces). This is an area of on-going development, and 
both the SoC vendors and third-party IP providers are 
developing IP cores to support the ever widening range of 
communications protocols and interface standards found in 
the embedded systems market. 

Modern SoC devices and the co-design approach, (invol-
ving embedded RTOS software, `soft'- and `hard'-IP cores, 
and bespoke digital design), provides a manageable and 
flexible route to embedded systems design. It may also 
change the relative roles of the hardware and software 

designer in the development of SoC designs. The reconfi-
gurable SoC devices can be deployed in a wide range of 
applications and the common-platform nature of the 
devices helps avoid the non-recurring costs associated with 
fully bespoke designs. The extensive use of `hard'- and 
`soft'-IP from SoC vendors and third party suppliers mini-
mises risk and facilitates time-to-market which gives com-
petitive advantage. However, it also involves entering into 
IP license arrangements for both product development and 
deployment. It will be interesting to see whether the rapidly 
decreasing SoC product design cycles are complemented by 
corresponding decreases in the time, complexity, and cost of 
negotiating multi-party IP license agreements. 
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