
//integras/b&h/Eer/Final_06-09-02/eerc015

15 Microprocessors

MIEEE

15.1 Introduction 15/3

15.2.1 15/5

15.3 15/6

15.4 15/8
15.4.1

15/8
15.4.2 15/9
15.4.3 15/9
15.5.4 15/10
15.4.5 15/11
15.4.6 15/11
15.4.7 Interrupts 15/13
15.4.8 Input/output 15/13
15.4.9 15/14

15.5 15/14
15.5.1 15/14
15.5.2 15/15
15.5.3 15/16
15.5.4 15/16
15.5.5 15/17

15.6 15/17
15.6.1 Selection 15/17
15.6.2 Repetition 15/18

15.7 15/19
15.7.1 15/19
15.7.2

15/19
15.7.3 15/20

15.8 15/21
15.8.1 15/21
15.8.2 15/21
15.8.3 15/22
15.8.4 15/23
15.8.5

15/23

15.9 15/23
15.9.1 15/23
15.9.2 15/24

D J Holding BSc(Eng), PhD, CEng, FIEE, MBCS,

Aston University

Contents

15.2 Structured design of programmable logic systems 15/3
Design for test

Microprogrammable systems

Programmable systems
The logic design of a digital
computer system
Processor architecture
Central processing unit
Control and timing unit
Arithmetic logic unit
Memory unit

Microprocessors

Processor instruction sets
Types of instruction
Data objects and data types
Instruction formats
Addressing data objects
Addressing program code

Program structures

Reduced instruction set computers (RISC)
The reduced instruction set concept
The reduced instruction set
(RISC) processor
Instruction pipelines

Software design
Program development
Assembly languages
High-level languages
Real-time processes
Embedded real-time
operating systems (RTOS)

Embedded systems
Embedded processors
System on chip (SoC) design

//integras/b&h/Eer/Final_06-09-02/eerc015

//integras/b&h/Eer/Final_06-09-02/eerc015

Introduction 15/3

15.1	 Introduction

Digital systems are used to process discrete elements of
information. They are built from digital electronic circuits
that process discrete electrical signals using simple logic and
arithmetic operations. A digital electronic system can also
be used to hold or store discrete elements of information
and this gives the system a memory capability. The ability
to store information or data and to process the data by
logical or arithmetic operations is central to the design of
nearly all digital information-processing systems including
digital computers. The function of a digital system is deter-
mined by the sequence of operations that are performed on
the information or data being processed. A digital system
can be classified by the way in which its sequence of oper-
ations is implemented.

A digital system is considered to be hardwired if the
sequence of operations is governed by the physical intercon-
nection of the digital processing elements. For example, in
hardwired logic systems the physical interconnections of
the elements govern the routes by which data flows between
the processing elements and thus the sequence of processing
operations performed on the data. Conventionally, a hard-
wired system is considered to be inflexible because the
design is specific to a particular processing function: if the pro-
cessing function is changed, then the processing elements
and their interconnections have to be altered.

The flexibility of hardwired systems has been much
improved by the introduction of programmable (i.e. config-
urable) logic devices such as Programmable Logic Arrays
(PLAs) and Field Programmable Gate Arrays (FPGAs)
that can be programmed or configured to implement an
application-specific digital signal processing function.
Flexibility has been improved further with the introduction
of re-programmable (i.e. re-configurable) devices that can
be reprogrammed easily during fast-prototype system devel-
opment, and can be reprogrammed after a product has been
deployed to provide enhanced features or performance.
Progress in this area has been rapid and the latest genera-
tion of re-programmable FPGA device can be configured with
a wide variety of communication interfaces. This opens
the possibility of using advanced communication technology,
such as the Internet, to re-program or re-configure a remote
hardwired system.

A digital system is considered to be genuinely program-
mable if a prescriptive program of instructions (i.e. soft-
ware) can be used to control the data-processing function
of the system. This type of system usually incorporates a
general-purpose processing element which is programmed
to implement a specific function in a predetermined way.
The coded instructions are normally stored in the memory
part of the system and the program forms an integral part
of the system. The ability to define the function of the
digital system by programming introduces considerable flex-
ibility into the system because the programming operation
can take place after the general-purpose digital elements
have been designed. It also means that identical hardware
designs can be used in a number of different applications, the
system being tailored to the individual tasks by the applica-
tions program. A wide range of simple f unction ixed-f
programmable systems, such as sequencers and micro-
programmed controllers, are used as controllers in embedded
electronic systems. In this type of application the sequence
of instructions is usually held in read-only memory
(i.e. firmware) which increases the robustness of the system.

The digital computer is a very important class of stored
program system. The computer or microprocessor is distin-
guished by the fact that its processing function depends on

both the prescriptive sequence of coded instructions and the
value of the data being processed. In effect, the program
prescribes a number of possible sequences of operations
and the conditions under which they may be carried out.
The computer, under program control, assesses the data
and determines which specific sequence of instruction is to
be executed. It is the ability of the computer to take into
account the value of the data being processed, when taking
decisions about the type of processing to be performed,
which makes the computer such a significant and powerful
information-processing device.

All three forms of digital electronic system find wide-
spread application. Traditionally hardwired logic has been
used extensively to provide the control and interface logic
for more complex digital components such as micropro-
cessors and other very large scale integration (VLSI) devices.
It is also used in the design of high-speed signal processing
circuits for FPGA implementation. Increasingly, hardwired
logic is used to provide the interface circuits between the
main functional components within a complex FPGA.
Where flexibility is required, it is common to use reconfigur-
able systems particularly in more complex applications.

Programmable systems are used in an extremely large
range of applications. The simpler fixed-function program-
mable systems are often used in repetitive tasks such as
input scanning and data acquisition. They are also used in
mass-produced products and as components of larger sys-
tems such as telephony equipment. However, the continu-
ally increasing computational power of the microprocessor
and its derivatives, such as digital signal processing (DSP)
devices or powerful reduced instruction set (RISC) proces-
sors, has led to many of these applications being designed
using fully programmable digital systems. In addition,
commercial off-the-shelf (COTS) microprocessors are com-
monly used in both stand-alone and embedded systems.
Such systems are providing economic solutions to design
problems in an increasingly wide range of application.

The increase in size of VLSI logic circuits has led to a new
generation of reconfigurable devices that are large enough
to contain a complete digital processing system within a
chip, called System on Chip (SoC) devices. An SoC device
can be configured to include an embedded digital RISC
processor, memory, communication interfaces, clock man-
agement, application-specific digital signal processing
(hardwired logic functions), and appropriate internal inter-
faces and data buses. This allows the designer to partition a
design into those parts that will be implemented as software
executing on the embedded processor and those parts that
will be implemented in hardware as high-speed application-
specific logic circuits. This design approach, known as
co-design or co-ware, has the significant advantage that
established and high-performance parts of the design can
be committed to application-specific hardware, and more
adventurous parts of the design or low-speed functions can
be committed to easily changed software. This minimises
risk, facilitates time-to-market which gives competitive
advantage, and provides a good path to post-deployment
upgrades of the system's capabilities and performance.

15.2	 Structured design of programmable
logic systems

The design of an application-specific digital system typically
involves the so-called `top-down' approach and starts from
a specification which includes a statement of the problem
and the identification of the principal functional parts of

//integras/b&h/Eer/Final_06-09-02/eerc015

15/4 Microprocessors

the system. This can be elaborated as an architectural speci-
fication which identifies the major components of the data
or signal processing system and a control specification
which describes an algorithm or procedure for the func-
tional control of the processing system.

Traditionally a systems-level design approach is adopted
and the design is developed through a structured process of
elaboration and refinement. During this process, the data-
or signal-processing specification is translated into a set of
digital signal processing modules or circuits. Similarly, the
control algorithm is depicted as a finite state machine
(FSM) and is translated into a sequential logic circuit that
generates the sequence of control signals which coordinate
and synchronise the signal processing modules. In large
designs the process of design refinement through analysis
and decomposition can be applied repeatedly to form a
hierarchy of functional descriptions. The process of decom-
position is conventionally terminated when the granularity
of the description matches that of commonly used digital
electronic building blocks such as arithmetic circuits and
memory elements, or sets of logic gates. However, modern
programmable devices, such as complex programmable
logic devices (CPLDs) and FPGAs, have complex internal
structures that are purpose designed for the efficient imple-
mentation of large functional units such as multipliers or
ALUs. Therefore, it is often counter-productive to elabo-
rate a design down to gate level without taking into account
the logic structure of the target device.
Figure 15.1 shows the general organisation of a system

designed using such an approach. It comprises external
inputs and outputs, the controlled circuit which performs
the data or signal processing, the controller which governs
its behaviour, and internal signal paths which transfer con-
dition or status information from the controlled circuit to
the controller and control signals generated by the control-
ler to the controlled circuit. The FSM controller is a simple
sequential circuit that comprises: a state register which
stores the current value of the state variables, combina-
tional logic for generating the next value of the state vari-
ables, a clock signal which synchronises the transition from
the current state to the next state, and combinational logic
for generating the value of the outputs (which are either a
function of the current state or a function of the inputs and
the current state).

Structured design techniques are well suited to computer-
aided design (CAD) or electronic design automation (EDA)
procedures. In particular, the hierarchical decomposition
techniques used during the design phase have a one-to-one
correspondence with the hierarchical CAD techniques used
in traditional schematic diagram-based approaches to the
capture, simulation, layout and routing, implementation,
test and validation of complex circuit designs. Increasingly
CAD tools provide high level specification capture
facilities, such as graphical state machine (FSM) editors, to
help capture design features in a tangible and user friendly
manner.

The trend is to write the system specification using
either a formal notation, or a programming language such
as C or concurrent extensions of C, or a hardware descrip-
tion language (HDL) such as VHDL or Verilog. These
notations provide constructs that facilitate the description
of complex logic systems or algorithms and an underlying
mathematical structure that can be used to reason about
the behaviour of the systems. The use of such abstract
or high-level notations has been found to facilitate design
by allowing the designer to focus attention on the
functional aspects of the design without the need to bind
the design to a particular implementation technology. This
is supported by modern CAD tools that allow high-level
behavioural specifications to be simulated to verify
the function of the system (i.e. using symbolic simulation)
before the high level description is compiled (i.e.
synthesised) into a logic circuit. It is conventional to use
the high-level description language to describe both the
design (or unit-under-test) and a test-bench (test sequence
generator and response analyser). Thus the highest level in
the design hierarchy comprises both the design and a test-
bench.

Design synthesis CAD tools are commonly used to trans-
late high-level behavioural digital systems specifications
into logic circuits. The synthesis process is not easy, and
modern synthesis tools typically use artificial intelligence
techniques and employ deep knowledge of the architecture
of the FPGA in order to synthesise sensible, efficient
and fast logic circuits. Once synthesised, the design can be
incorporated into the conventional logic design process of
post-synthesis simulation, routing, implementation, test and
validation.

Conditional
External (immediate)
inputs

State
outputs

FSM controller

outputs

Clock

Controlled
circuit

Controlled
circuit
outputs

Figure 15.1 General organisation of a structured digital design

//integras/b&h/Eer/Final_06-09-02/eerc015

Structured design of programmable logic systems 15/5

15.2.1 Design for test

It is normally a principal design requirement that the circuit
should be testable. In most structured design methods the
derivation of the functional specification goes hand-in-hand
with the specification of tests to verify that the designed
circuit functions as intended. The problem of testing a cir-
cuit is made more difficult when it is implemented as an
ASIC because the limited number of pins on the integrated
circuit restricts access to test points in the circuit. In parti-
cular, the constraint that test inputs must be applied via the
external input pins limits the controllability of internal parts
of the circuit under test. Similarly, the constraint that the
response of the circuit must be observed using the output
pins limits the ability to observe the state of internal parts
of the circuit under test. For testability, it is necessary to
ensure that the accessible or primary inputs can drive each
node of the circuit (the property of controllability) and that
each node can be observed from the accessible or primary
outputs (the property of observability).

Combinational logic is tested by applying a set of test
patterns to the inputs of the circuit, measuring the circuit's
response at its outputs, and comparing its response with its
predefined fault-free function. In order to test a testable
circuit, it is necessary to generate a set of inputs (test vectors)
which can be applied to the primary inputs and drive each
node of the circuit. Observability problems may arise if
redundant logic to added to a circuit to provide hazard
cover.

External Inputs
A
B

CLK / TCK

2:1
MUX1

0DQ

DQ 2:1 0

Scan In

Scan out

TDO

TDI

TMS
D-type

D-type

Logic

NX0

NX1

State
outputs

Conditional
output logic

State output
logic

outputs

Current
States

X1
X0

MUX1

X1

Next State
Next States

Clock

The problem of testing sequential logic is considerably
more complex because the state of a sequential circuit is a
function of both the current inputs and the previous state of
the circuit. To reduce the problem of testing such circuits, it
is desirable to open the feedback paths (which are essential
to sequential behaviour) and thus change the problem to
one of testing the constituent next-state and state-output
combinational logic. This requires the introduction of addi-
tional gates to inhibit the feedback paths, to allow the asser-
tion of test states, to ensure the direct control of the clock,
and to allow the observation of the next-state variables.
This approach tests the combinational components and
memory elements but does not provide a full-speed test
of the actual sequential circuit and additional tests are
required to ensure that the circuit is free of race hazards.

In the case of structured designs, a primary concern is the
test of the controller which coordinates and synchronises
the data or signal processing modules. In a typical FSM,
the function of the controller is clearly defined by the con-
trol algorithm and the finite state machine controller is rela-
tively easily tested once the feedback loops of the sequential
part of the circuit are opened. Furthermore, the state regis-
ter can easily be reconfigured in the test mode to form a
shift register for the entry of test data and the capture of
test results. This is shown in Figure 15.2 for a controller
with two state variables; the test mode select signal TMS
causes the reconfiguration of the D-type state register to
form a test vector shift register (shown in bold). This tech-
nique, which is known as scan path testing, can be applied

Conditional

State register

Figure 15.2 Scan-path design for an FSM controller

//integras/b&h/Eer/Final_06-09-02/eerc015

15/6 Microprocessors

to a wide range of circuit and there are many variations of
the theme, such as random scan and level sensitive scan
techniques.

In general, significant increases in controllability and
observability can be obtained if serial input and output
techniques are used to load test data into an ASIC and
remove capture response data from the ASIC. This can be
achieved by incorporating a general-purpose shift register
with serial-load/parallel-out, and parallel-load/serial-out
facilities within the ASIC. In a typical test, the ASIC circuit
would be put into test mode and the test stimuli or vector
would be serial loaded into the shift register. The ASIC
would then be switched into normal mode and the test

tdata present at the parallel output of the shif register
would be allowed to excite the circuit. When the response
had stabilised, observation data would be latched into the
shift register using the parallel-load facility. The ASIC
would then be put into test mode and the response would
be output using the serial-output facility of the shift register.
Clearly, the additional test circuits must be built into the
ASIC as part of the design. This method requires up to five
pins on the integrated circuit to be dedicated for test pur-
poses: test mode select (TMS), serial test data in (TDI),
serial test data out (TDO), direct control of the relevant
clock circuits (TCK), and a reset (TRST). The use of such
signals is consistent with the JTAG/IEEE standard 1149.1
which provides a framework for test at board and chip test
level, primarily using the Boundary Scan technique that is
commonly provided as a built-in component of modern
VLSI and ASIC devices.

15.3 Microprogrammable systems

A typical digital system's design can be decomposed into a
set of signal or data processing elements and a set of Finite
State Machines (FSMs) which coordinate and control the
signal- or data-flow and processing. To do this, the FSM
controllers monitor any necessary signals (such as inputs
or status signals) and generate the control signals necessary
to coordinate, synchronise and control the signal- or data-
processing elements. It follows that the FSMs form a crucial
part of such designs, and a variety of structured design
methods have been devised for capturing and synthesising
the FSM controllers. These include traditional algorithmic
state machine or ASM design methods, and state-transition
diagram methods that allow direct synthesis of the design
from Mealy or Moore diagrams. In addition, many HDL
synthesis tools include program analysis tools that are
designed to detect FSM-like structures and specifically
synthesise FSM components. A key point in all these design
methods is the assignment of a unique binary coding to each
state of the system and the design of a bespoke finite state
machine to generate the required state sequences and state
outputs.

The need for bespoke hardware can be removed by
designing a general-purpose controller (or finite state
machine) which can be `programmed' to produce the neces-
sary control functions. To accommodate such an approach,
a simple FSM can be reduced to a networks of states, state
outputs, and single-qualifier decisions by replacing any
conditional or immediate outputs by state outputs and by
inserting additional states where necessary to ensure that
only one qualifier is associated with each decision. A unique
state identifier is then assigned to each state according to a
normal binary count (as far as possible) so that the state-
machine design can then be implemented using a counter,

with appropriate controls, instead of with a state register
and combinational next state logic. The modified FSM
can then be reduced to a set of `instructions' by identifying
commonly occurring structures and their associated counter
control logic as follows:

(1)	 Sequence of states: increment counter unconditional
(IUC).

(2) Decision: increment or branch conditional (IBC).
(3)	 Wait until condition: hold or increment conditional

(HIC).
(4) Branch unconditional: branch unconditional (BUC).
(5) Loop forever: hold unconditional (HUC).

The counter is normally controlled using two control
lines, `counter enable' (CE) and `counter load' (LD). On
the next clock, the counter is incremented if CE is asserted
or a branch address is loaded into the counter if LD is
asserted. Thus, the counter control logic necessary for each
construct or primitive instruction defined above can be
readily determined. The use of mnemonics (such as IUC,
HIC etc.) to represent commonly occurring structures
allows the FSM to be replaced by a list of primitive sym-
bolic `instructions'. Each instruction will define the present
state identifier or location count, the mnemonic describing
the control operation to be performed on the counter, the
identity of any qualifier, the name or value of any branch
address, and the name or value of the state outputs. A typ-
ical instruction format is shown in Figure 15.3.

A suitable processing architecture for the above primitive
instructions is shown in Figure 15.4. The state register is
implemented with a controlled counter and, as only one
instruction is needed per state, the input and output logic
is efficiently implemented in ROM. The relevant input
(or qualifier) for each state is chosen by addressing a multi-
plexer. Before the contents of the ROM (or RAM) can be
defined, each instruction must be assigned a binary code or
`opcode' and each input must be assigned a MUX address.
The instruction decoder is needed to translate the instruc-
tions into suitable control signals for the counter. In the
case of conditional instructions, the counter control signals
depend on both the instruction type and the qualifier or
`flag'.

Thus, each instruction stored in ROM comprises an
opcode, the binary MUX address for the input qualifier,
the binary branch-location address, and the binary values
of the state outputs. This form of instruction is known as
a microinstruction. The function of the controller can be
changed by simply altering the microinstructions, and this
process is known as microprogramming. Microprogramming
is tedious and error prone and software development tools
such as assembly language generators are often used to
allow programming using symbolic notations.

In practice, a number of proprietary microprogrammable
controllers have been developed. They are often equipped
with a primitive stack to allow a limited procedure or sub-
routine facility. This requires additional instructions such as
`call procedure' or `branch to procedure' and `return from
procedure' and mechanisms to increment the current counter
(or ROM address) and save the incremented address in
the stack, to load the procedure start address or value into

Figure 15.3 Microinstruction format

//integras/b&h/Eer/Final_06-09-02/eerc015

Microprogrammable systems 15/7

Figure 15.4 Simple microprogrammable architecture

Figure 15.5 Microprogrammable controller

//integras/b&h/Eer/Final_06-09-02/eerc015

15/8 Microprocessors

the counter, and to retrieve the address from the stack and
load it into the counter. An external load facility for the
counter may also be provided so that the controller can be
used in conjunction with another processor. This gives the
architecture shown in Figure 15.5. Such processors often
have regularised instruction sets and well-developed tools
for software development including simulation and emula-
tion facilities.

Since a microprogrammed controller is a relatively simple
circuit; designers have often taken the opportunity to
incorporate a data processing capability into the design.
Significantly, such microprogrammed `processors' often
incorporate a specialised, very high performance, arithmetic
processor. Typical examples include high performance
floating-point arithmetic processors, and digital signal
processing devices (which include a high-speed multiplier
and accumulator for implementing the repetitive add-and-
multiply operations found in digital filtering algorithms).
Microprogrammed controllers are readily available as
stand alone devices, or as pre-prepared HDL scripts,
known as `intellectual property (IP) cores', that can be
embedding within an HDL design and synthesised for an
FPGA target.

15.4 Programmable systems

A programmable system, such as a microprocessor or com-
puter, comprises a general-purpose processing unit which
processes data or digital signals. The processing operations
performed are specified by a computer program, which con-
sists of a set of logical instructions stored in the computer
memory.

A programmable system will comprise digital electronic
circuits to:

(1) input signals or data from external circuits or systems;
(2) move or transfer the data within the system;
(3) store the data before, during and after processing;
(4)	 process the data by logic, arithmetic or bit manipulation

operations;
(5) output the processed data to external circuits or systems.

Each of these operations can be performed by an appro-
priate configuration of combinational and sequential logic
circuits including memory elements. In practice, program-
mable systems comprise a general-purpose logic design
which can be configured to perform a wide range of opera-
tions. The hardware is controlled by a program or sequence
of instruction codes which define the operations necessary
to implement a particular processing function. The instruc-
tion codes are normally stored in the memory part of the
system and the function of the system can be changed
simply by altering the stored program. This type of system
can be considered to be composed of two parts: the hardware
which is basically independent of the application and the
software which defines the application function. Since the
hardware part of such a system is invariant, it can be pro-
duced economically as a standard design or device.

There are basically two types of general-purpose pro-
grammable system. The fixed function programmable
machine is a limited form of programmable system which
is constrained to perform a prescribed and fixed sequence
of instructions. This type of system does not have the
capability under software control to select between two
alternative sequences of instruction. A fixed function
programmable machine is therefore forced to execute a

fixed sequence of instructions in all circumstances and is
properly regarded as a programmed machine rather than a
computer. The application function of such a system can be
altered only by reprogramming the system. These systems
can be used in any applications in which the processing
function does not depend on the nature or value of the
data being processed.

The digital computer is the most powerful and flexible
form of programmable system. A program of instructions
which are executed in sequence again defines its function,
but in the case of the computer the program may specify
alternative sequences of instructions and the conditions
under which they can be executed. For example, conditional
expressions and alternative sequences are implicit in high-
level programming constructs such as `if condition-true
then . . .', `repeat . . . until condition-true', and `while condi-
tion-true do . . . '. Special hardware is required to carry out
this type of operation and a computer is equipped with a
logic circuit, known as a status register, which is used to
store information about the status of the processor after it
has executed an instruction. When a program is executed,
each conditional expression is evaluated (using the actual
values of the data variables) and the resulting values of the
bits or flags in the status register are used to identify which
alternative sequence of instructions is to be executed next.
Thus, the order of processing may be modified according
to the result of the instruction. It is this mechanism which
allows a program to take into account the nature of the
information being processed.

In effect, the computer can be programmed to take a
decision about the future courses of action that it may take,
based on the actual value of the data being processed. It is
this facility which characterises a proper computing system
and which makes the computer such a powerful data pro-
cessing system. Such systems are providing economic
solutions to digital signal and data processing problems in
an increasingly wide range of applications.

15.4.1 The logic design of a digital computer system

A digital computer system can be considered to be com-
posed of two logic structures. The first is associated with
the flow, storage and processing of data and consists of the
data input and output subsystems, the data highways used
to move or transfer data within the system, the memory
which is used to store the data, and the arithmetic logic
unit which is used to process the data. The function of the
processor is prescribed by a program of instructions held in
memory. The second structure is responsible for controlling
the fetching of instructions from memory and for ensuring
that they are executed in the correct sequence. It also
governs the detailed execution of each instruction and con-
trols the data-flow and data-processing elements so that
they perform the required processing operation.

The control structure consists of the memory which is
used to store the program code and mechanisms for identi-
fying the location of the next instruction, for fetching and
decoding the instruction, and for identifying the location
of any inputs or stored data which form the operands in a
processing operation. It controls all aspects of the execution
of the instruction including fetching operand data and,
when necessary, taking into account the status of the pre-
vious programming operation. It also identifies the destina-
tion location of any resultand data generated by the
processing operation and stores the resultand or generates
an output.

The data-processing and program-control structures are
heavily interconnected and often share common hardware.

//integras/b&h/Eer/Final_06-09-02/eerc015

Figure 15.6 Processor architecture

In particular, the program code and the data being
processed are usually stored in an identical binary format.
It is usual for code and data to be stored in separate areas
or segments within a common memory unit.

15.4.2 Processor architecture

Computers and microprocessors are general-purpose
programmable systems which perform sequential proces-
sing operations. Classically, they are constructed using gen-
eral-purpose functional units such as a central processing
unit or CPU, a memory unit, and an input/output subsys-
tem, as shown in Figure 15.6.

The CPU is the heart of the computer, it contains the
control and timing unit (CTU) which controls the pro-
grammed operation of the system and the arithmetic logic
unit (ALU) which processes the data. An external clock

Programmable systems 15/9

provides the timing pulses or reference signals required by
the CTU. The CPU also contains a number of important
registers such as the program-counter which points to the
next instruction, the instruction register which holds the
current instruction, and the status register or flag register
which stores the status information about the result of
the previous instruction executed by the CPU.

The memory unit provides storage for program code
and data. The code and data are always considered to be
separate entities although they may share physical memory.
(Some processor designs enforce the conceptual separation
of code and data by providing separate memories for code
and data.) The memory is arranged into words which con-
sist of several binary digits, typically 8, 16 or 32 bits. Each
word can be individually addressed and operated on by the
computer.

The input/output subsystem of a computer provides the
interface to external circuits or systems. Data may be passed
in and out of the computer via serial or parallel interfaces.
The input/output system is used to input program code, to
input data for processing, and to output results. It also pro-
vides the means of communication with the operator via a
man-machine or human-computer interface (MMI or HCI).
The processing power of the computer can only be used if
the input/output subsystems allow efficient communication
between the user or application and the processing system.

Many computer systems are configured around one or
more general-purpose data highways. They typically con-
sists of a common bus structure of address, data and control
lines and are used to communicate to all devices external to
the CPU including memory, input/output systems and
backing stores. The simple bus-orientated architecture illu-
strated in Figure 15.7 provides ease of access to the control,
address and data highways which are used to interface any
logical system to the CPU. Bus-oriented architectures are
used in many designs to provide a flexible and easily
expanded computer system.

15.4.3 Central processing unit

The CPU contains the CTU which coordinates, synchro-
nises and controls the fetching of instructions from memory
and the execution of the instructions. The execution of an
instruction will typically involve fetching operand data
from memory, processing the data in the ALU, and storing
the result in memory. The CPU also contains at least the
minimum set of internal registers necessary for the execu-
tion of a program. These include the program-counter

Figure 15.7 Bus-orientated system architecture

//integras/b&h/Eer/Final_06-09-02/eerc015

15/10 Microprocessors

register, the instruction register, the data memory reference
registers, and the CPU data registers.

15.4.3.1 Program-counter register

This holds the address of the memory location containing
the next instruction to be executed. It is the programmer's
responsibility to initialise the program-counter correctly, so
that it points to the first instruction in the program. During
program execution, the program-counter is automatically
incremented by the CTU to point to the next instruction.
In this way the CPU is forced to execute instructions in
strict sequence. However, some instructions are provided
which modify the contents of the program-counter. For
example, unconditional jump, branch, or `go-to' instructions
simply overwrite or modify the contents of the program-
counter to effect a branch to another instruction. Similarly,
conditional jump or branch instructions modify the con-
tents of the program-counter if a particular condition is
satisfied. This feature allows the program sequence to be
modified if a specified condition is detected in the data
being processed e.g. if the result of the previous instruction
was negative.

15.4.3.2 Instruction register

This register holds the current instruction so that it can
be decoded and input to the control and timing unit.
Specifically, the instruction register holds the opcode which
defines the type of instruction. Depending on the type of
instruction, it may also hold immediate operand data or
the addresses of operands and the address of the resultand.
Since operand data and addresses comprise many bits, they
are commonly held in temporary registers which can be
considered as extensions to the instruction register. The
contents of the instruction register can not be overwritten
by the ALU, nor can they be accessed by a programmer.

15.4.3.3 Status register

This comprises a number of discrete status bits or flags and
holds status data about the result of the previous instruction
executed by the ALU. The data are used when computing
`decisions', such as selecting one of two possible future
courses of action. Processors actually compute decisions of
this type in two stages. In the first stage the ALU computes
the condition which governs the decision; the Boolean result
(yes/no or true/false) is held in the status register. In the
second stage, this result is used as a qualifier in a condi-
tional operation, such as a conditional branch or jump,
such that the value of the qualifier is used to choose the
appropriate future sequence of instructions. It is the respon-
sibility of the programmer (or compiler writer) to ensure the
correct and consistent use of the status register throughout
the two-stage process of computing a decision.

15.4.3.4 Data memory reference pointers

These registers hold the addresses of the operands and
resultand and are loaded during the instruction `fetch'.
They are used to access data objects during the execution
phase of the instruction cycle and should be capable of
accommodating the various addressing modes associated
with the complex data types used in high-level program-
ming languages. Therefore, it is perhaps more accurate to
think of a data memory reference pointer as a mechanism
which generates the address of a data object. The number of

address registers available in a CPU is an important feature
of computer architecture. Ideally, separate pointers or mech-
anisms are required for each operand and the resultand.

15.4.3.5 CPU data registers

These hold operands and resultand data during the execu-
tion of a program. Again, microprocessors differ, particu-
larly in the internal storage provided in the form of CPU
data registers. However, most processors have an accumu-
lator register into which the ALU will automatically load
the resultand of a processing operation. Many modern
microprocessors have a larger number of CPU data regis-
ters which can operate as accumulators in complex arith-
metic and logic operations.

Those parts of a processor which are of direct interest to
a programmer are shown in the programmer's model which
describes only those registers within the CPU which can be
accessed by the programmer. Figure 15.8 shows the pro-
grammer's model of a typical microprocessor system.

15.5.4 Control and timing unit

The basic operation of a computer or microprocessor is
governed by the control and timing unit (CTU) which gen-
erates the signals necessary to coordinate, synchronise and
control the movement and processing of all information
within the system. A simple external clock usually drives
the unit, and this provides a time-reference signal from
which the CTU generates the timing and control signals
for the various logic subsystems in the computer. Modern
high-performance processors may include a separate clock
management subsystem which generates multi-phase timing
sequences for use by the CTU.

The control and timing unit is responsible for controlling
the main operational cycle of the processor which is known
as the `instruction cycle'. The instruction cycle can be split

Figure 15.8 Programmer's model

//integras/b&h/Eer/Final_06-09-02/eerc015

into two distinct phases, the instruction fetch and the execu-
tion of the instruction. During the instruction fetch the
address of the next instruction is obtained from the pro-
gram-counter mechanism and transferred to the memory
address register (MAR). A memory reference operation
is then performed on the code part or code segment of
memory to read the opcode which is the first part of an instruc-
tion. The opcode data are transferred via the memory buffer
register (MBR) to the instruction register where it is
decoded and then input to the CTU. The program-counter
is then updated to point to the next part of the instruction
or to the next instruction.

The opcode identifies any further memory reference
operations which are required to complete the instruction
`fetch'. The control unit uses the updated program counter
to make reference to successive addresses in the code part of
memory to fetch any further parts of the instruction, such as
immediate data values or the addresses of the operands and
the address of the resultand. This information is transferred
to various temporary registers in the CPU for use during
the `execute' cycle. At the end of the instruction `fetch', the
CPU will contain all the information it requires to control
the execution of the instruction and the program-counter
will be pointing to the next instruction to be fetched (assum-
ing that the execution cycle does not compute a new pro-
gram-counter address). The various logic units used during
the instruction `fetch' cycle are shown in Figure 15.9 in
which the memory and input/output discriminator M/IO is
used to distinguish between memory reference operations
and any operations involving peripheral systems which
may use the same address and data bus.

The opcode also defines the sequence of operations neces-
sary to execute the instruction. During the execution part
of the instruction cycle the control and timing unit will
synchronise the transfer of data within the system and control
the operation of the ALU. The control unit will access oper-
and data by transferring the operand addresses from the
temporary registers to the memory address register to
perform memory reference operations. In practice, many
processors have a complex data reference pointer which
will compute the address of the data object using not only

Figure 15.9 Instruction `fetch' logic structure

Programmable systems 15/11

the temporary register but also base or segment registers,
offset registers, and index registers according to the addressing
mode specified in the instruction. If the computer has a
memory-to-memory architecture, then operand data can be
transferred direct from immediate access memory to the
arithmetic logic unit and resultands can be returned direct
to storage in immediate access memory. However, if the
computer has a register-to-register architecture, then the
operand data is normally transferred to a CPU register
before being processed by the arithmetic logic unit and
resultand data is held in the accumulator or transferred to
another CPU register. The register-to-register architecture
has distinct performance advantages, particularly when
used with a multiple-instruction pipeline CTU, as in mod-
ern reduced instruction set (RISC) processors.

15.4.5 Arithmetic logic unit

The actual data processing operations are performed by the
ALU, which is a general-purpose logic system and can
normally perform logical, arithmetic and bit manipulation
operations. The ALU operates under the control of the
control and timing unit and its function is defined by the
current instruction held in the instruction register. The ALU
can perform both monadic (single operand) and dyadic
(two operand) operations and, therefore, has two input
data paths. It generates status information in the status
register and has an output data path for the resultand.
Depending on the architecture of the processor, the oper-
and data inputs may be from either immediate access mem-
ory registers or CPU data registers. The resultand is usually
output to a special register, known as the accumulator,
which is normally a multi-function register which can parti-
cipate fully in the processing operations. In some systems
the accumulator is used to store one of the operands before
a processing operation and is subsequently used to store the
resultand. This technique removes the need to have two
operand registers and may increase the operational speed
of the processor. However, the need to minimise the number
of CPU registers is no longer a major design objective and
many modern microprocessors have a number of CPU regis-
ters of advanced design which can act as operand registers
or accumulators.

The ALU also contains the status register which is also
known as a flag register or condition-code register. This regis-
ter consists of a number of flip flops (flags) whose state
reflects the result or state of the processing element at the
end of the previous processing operation. This is illustrated
in Figure 15.10 which shows in schematic form the structure
of a typical ALU and the other logical systems associated
with the execution part of the instruction cycle.

15.4.6 Memory unit

The memory unit provides storage for program code and
data. Computers commonly use two types of memory, fast
immediate-access memory and backing store memory,
which have different roles and functions.

The immediate-access memory is considered to be the
primary memory unit of a computer, it is used to store
program code and the data associated with the program
so that it may be readily accessed during the execution of the
program. Read only memory (ROM) devices may be used
to store information which does not alter, such as program
code or constant data, and random-access read-write
memory (RAM) devices are used to store data which may
be altered, such as the value of variables. The immediate

//integras/b&h/Eer/Final_06-09-02/eerc015

15/12 Microprocessors

Figure 15.10 Instruction `execution' logic structure

access memory is normally constructed using semiconduc-
tor memory devices. Typically, large memories are built
using dynamic RAM memory devices which provide `high-
density' storage at relatively low cost.

The immediate-access memory is normally limited in size
by the computer architecture. For example, simple micro-
processors may have a 16-bit memory address and this
limits the size of the immediate-access memory to 64k registers
or elements. While a 64 k �(8-bit memory is often sufficient
for embedded applications such as dedicated control
systems, larger memories are often required to support
general-purpose applications software. Typically, modern
microprocessors use 32-bit effective memory addressing
and commonly have a 128 M byte or 256 M byte memory
which is sufficient to run modern operating systems and

applications software. However, the performance of
memory-intensive applications, such as image processing,
computer aided design (CAD), and interactive computer
games, may benefit from larger memories. Therefore, more
advanced microprocessors have the capability to physically
address 1 G or more of memory.

Many computers have facilities for using an area of mem-
ory as a stack. This is a block of RAM memory which is
used on a last-in/first-out (LIFO) basis for storing context
information, such as the values of the program-counter,
status register, and other CPU registers, or for storing data
such as the parameters passed to subroutines. This facility is
particularly useful for storing addresses and register con-
tents during subroutine operations or during the context
switches which take place following an interrupt.

//integras/b&h/Eer/Final_06-09-02/eerc015

Figure 15.11 Stack layout in RAM memory

A stack is organised by a stack pointer, which is a CPU
register holding the address of the last item placed on to the
stack, also called the `top-of-the-stack'. Instructions are
provided which automatically decrement the stack pointer
before data is stored (PUSH) or automatically increment
the stack pointer after data is retrieved (POP) from the
stack. A stack grows downwards in the store as shown in
Figure 15.11.

Stacks can be used to implement nested subroutine calls
by simply putting return addresses and CPU register con-
tents on to the top of the stack during successive calls.
Recursive subroutine calls can be implemented in a similar
manner provided parameters are passed to the subroutine
on the stack and local variables are stored on the stack at
each level of call. Typically, the parameters are pushed onto
the stack before the subroutine call; following the call
the parameters are accessed by the subroutine using
indirect addressing (using any CPU address register other
than the stack pointer so that the stack pointer is available
for the next recursive call). Results can be returned using
the same technique. The stack can be employed in a similar
fashion to store register and address information following
an interrupt, including multiple and re-entrant interrupts.

Large immediate-access memories are relatively expen-
sive to implement and are unsuited to the long-term storage
of large program or data files. Most computers are there-
fore equipped with auxiliary or backing stores which are
normally sequential access storage systems such as magnetic
memory hard discs, and removable sequential stores such
as optical storage discs, 650 M byte compact discs or
CDs (such as write-once, read-only CD-R or read-write
CD-RW discs), or 4.7 G byte digital video discs or DVDs (such
as write-once, read-only DVD-R or read-write DVD-RW
discs). These systems provide economic storage for the
large volumes of data which are commonly used in database
or image processing applications. Most computers are still
equipped with a floppy disc drive, though this legacy tech-
nology is increasingly irrelevant for backing store purposes
and is usually reserved for system start-up (or boot-up)
during installation or fault recovery. Magnetic tape
cartridges still provide economic storage for backing up
large-scale systems such as servers.

15.4.7 Interrupts

In many applications the computer must respond rapidly
when an external event occurs. This is usually achieved by
an interrupt facility. The CPU is provided with a special
input, the interrupt control line, which is used to notify the
processor of the occurrence of an asynchronous external
event. When the event occurs, e.g. a key is depressed or
a switch is closed, the interrupt control line is driven to a
specified logical state and the CPU is interrupted.

On detection of an interrupt, the processor carries out a
sequence of operations that transfers control to a special
form of subroutine, called the `interrupt handler' or `inter-
rupt service routine', which is located at a pre-determined

Programmable systems 15/13

address in memory. The actions taken to invoke an inter-
rupt service program vary from computer to computer, but
in general terms the following sequence occurs:

(1) At the end of the current instruction the contents of the
program counter and the status register are automatic-
ally stored in the stack and the interrupt line is dis-
abled.

(2) The program counter is loaded with the address of an
interrupt service routine, either directly or following
interrogation of the interrupt source to determine the
identity of the service routine so that the CPU can be
vectored to one of a number of interrupt entry addresses
appropriate to the particular interrupt.

(3) The interrupt service program is entered. Care should
be taken to ensure that the interrupt service program
does not alter the context of the interrupted program.
Therefore, the CPU registers needed by the service
routine are stored in the stack, this may be an automatic
hardware facility or may be performed by the interrupt
handler software.

(4) When	 the interrupt service program is complete,
the context of the interrupted program is restored
(by restoring the contents of registers saved in the stack)
and control is returned to the interrupted program by
restoring the contents of the status register and the pro-
gram-counter. Also, interrupts are re-enabled if this has
not already been done as part of the interrupt service
above.

15.4.8 Input/output

The role of the input/output subsystem is to interface the
computer to external logic devices. There are several ways
of controlling input and output. Normally, data are input
or output under program control at prescribed points in a
program. In an event-driven environment, data can be input
or output in response to an interrupt under the control of
an interrupt service program. However, in both cases, the
speed of data transfer is governed by the interface logic
and by the speed of the input/output control program
which executes in the CPU. In high-speed applications the
restrictions due to the control program can be removed if
the external logic circuits can access the immediate-access
memory directly using a suitable access mechanism and
input/output protocol.

15.4.8.1 Program controlled input/output

There are two commonly used methods for connecting
input and output systems to a processor for program or
interrupt controlled input/output. The most elegant techni-
que treats all input and output ports as if they were memory
registers in the memory unit. The input and output ports are
connected to the address, data and control bus structures as
if they were memory elements and are designed to operate
to the same electrical and functional specification as a mem-
ory register. Data can then be output using a memory refer-
ence `write' instruction at the output address, or input using
a memory reference `read' instruction at the input address.
This method, which is known as memory-mapped input/output,
is used in a wide range of processors. It gives fast input and
output and is compatible with other software data-transfer
instructions.

An alternative approach connects all inputs and outputs
to a separate input/output bus structure which normally
consists of a limited number of address lines and the usual

//integras/b&h/Eer/Final_06-09-02/eerc015

15/14 Microprocessors

control signals. In bus-orientated systems a subset of the
memory address lines is used and an additional memory or
input/output discriminator signal (M0/IO) is used to gener-
ate unambiguous addresses. Input/output-mapped input/
output is not compatible with memory reference operations
and special instructions such as IN or OUT are often used
to distinguish this mode of operation.

Serial communications are usually interfaced using a
universal asynchronous receiver and transmitter device
(USART) which contains a serial-to-parallel receiver buffer,
a parallel-to-serial transmitter buffer, a mode control regis-
ter, and a status register which indicates valid communica-
tions. The data, control, and status register are accessed
using either memory-mapped or input±output mapped
techniques according to the architecture of the processor.

15.4.8.2 Interrupt-driven input/output

An interrupt can be used to force a processor to suspend its
current task and execute an interrupt service program, as
described in Section 15.4.7. Interrupt driven input/output
is implemented by connecting the control logic of the exter-
nal device to an interrupt line so that the device can demand
the CPU's attention. Following the generation of an inter-
rupt, the CPU is forced to respond immediately and execute
a program which services the input or output requirements
of the interrupting device. Interrupt-driven input/output
maximises the utilisation of the external device, but causes
suspension of the current task. Interrupt-driven input/out-
put is commonly used to interface intermittent inputs such
as keyboards. However, in some embedded applications it is
undesirable to interrupt an executing task, and the preferred
approach is to regularly inspect (or poll) an external device
for the availability of an input.

15.4.8.3 Direct memory access

The use of direct memory access (DMA) allows an external
device to transmit data directly into the computer memory
without involving the CPU. The CPU is provided with con-
trol facilities which allow the DMA controller (external to
the CPU) to gain control of the CPU data bus. The DMA
controller must provide a memory address, the data, and
bus control signals to effect a data transfer. The DMA con-
troller then transfers data directly over the bus to or from
the memory. DMA transfers are commonly used to send
blocks of data, rather than individual items of data,
between backing stores or peripheral devices and memory.
The controller contains a counter to increment the memory
address and count the number of transfers made within the
data block. The DMA process is also referred to as cycle-
stealing, since it proceeds simultaneously with program
execution, the only effect being that the instruction execu-
tion time is increased by the number of memory cycles used
when a transfer is in progress.

The relative merits of DMA over other means of input/
output is that it is fast, uses the minimum amount of
computer time per data word transferred and operates
autonomously. The loss of instruction execution time is
not usually significant unless a very large number of devices
are under DMA control. The major disadvantage of DMA
is that the computer program is not explicitly aware of
changes in data or the completion of a DMA transfer and
it is usually necessary to make the DMA controller invoke
an interrupt to inform the CPU that a data block transfer is
complete.

15.4.9 Microprocessors

Advances in microelectronics and computing science have
provided the technologies necessary to construct the com-
plete central processing unit of a computer on a single inte-
grated circuit; this device was called a microprocessor. The
microprocessor, which was developed in 1971, realised a step
change in the cost, performance, power consumption and
reliability of a minimum computer system. Further advances
in VLSI design led to the development of integrated circuits
containing both the CPU and the memory unit; the so-called
single chip computer. In effect, these advances had resulted
in the miniaturisation of the computer.

The microprocessor can also be viewed as an advanced
programmable logic device. Special microprocessors and
other advanced programmable systems have been devel-
oped to carry out specific computational functions. These
processors are often designed to work in conjunction with
a general CPU and are known as co-processors. A number
of devices such as fast floating-point arithmetic units, com-
munication or local area network co-processors, and multi-
media units such as audio processors and graphics and
video display generators, are available and can be used in
the design of powerful processor architectures. To prevent
such high-bandwidth processing elements making signifi-
cant demands on immediate-access memory, they are often
provided with separate application-specific memories as in
the case of video display subsystems. A typical system archi-
tecture of this type is shown in Figure 15.12 which illustrates
the use of programmable systems including microprocessors
in the design of an advanced information processing system.

15.5 Processor instruction sets

Most general-purpose computers or microprocessors are
designed to execute sequences of instructions or more com-
plex programs of instructions which prescribe the actions
necessary to input, store, and process data, and output com-
puted results. The instruction set of a processor defines the
machine code operations, which the processor can perform.
However, the range of instructions available with a particu-
lar processor depends to a considerable extent on the design
objectives of the particular manufacturer. The range and
capability of the instruction set provided may have a con-
siderable influence on the choice of a computer for a parti-
cular application task.

15.5.1 Types of instruction

Although there is no standardisation of computer instruc-
tions, most processors provide primitive operations or
instructions for the following.

15.5.1.1 Program flow control

The sequence in which instructions are executed is defined
implicitly by the program which comprises an ordered
list of instructions held in successive memory locations.
Unconditional branch or jump instructions can be used to
jump to a program in another part of memory. Also, repeti-
tive or loop structures can be formed by jumping back to
an instruction which has already been processed. However,
the true power of a programmable system is provided by
conditional instructions. The flags in the status register can
be used as qualifiers for conditional branches, either on
their own, as in `branch if zero', or in combinations as in
`branch if greater than' or `branch if less than or equal'.

//integras/b&h/Eer/Final_06-09-02/eerc015

Processor instruction sets 15/15

Immediate
access Backing
memory stores Peripherals

CPU
M
controller

co-processorco-processor

Disc
controller

LAN
co-processorco-processor

Bus timing
and control

controller
emory

Video display Arithmetic Audio

Serial and
parallel port

Multimedia
display
systems

Figure 15.12 A multiprocessor system architecture

When computing decisions (selecting between alternative
sequences of code) conditional branch or jump instructions
are used to determine whether to continue the present
sequence or jump to the start of an alternative sequence.
Similarly, conditional jumps can be used to form condi-
tional exits from repetitive structures.

Although most processors are unable to implement
directly the flow control constructs found in high-level pro-
gramming languages, the implicit sequence, unconditional
branch and conditional branch instructions form the primi-
tives from which constructs such as `if-then-else', `while-do',
and `repeat-until' can be formed.

15.5.1.2 Data-flow including input and output

Data-transfer instructions, such as MOVE, can be used to
input external data to a CPU data register or an immediate-
access memory register, to transfer data between such regis-
ters, and to output data from such registers to the outside
world. Although these instructions do not necessarily make
use of the ALU and may not alter the status register, they
can be classed as data processing instructions in the sense
that they assign values to the variables (registers).

15.5.1.3 Data-processing instructions involving the ALU

Most processors provide a range of arithmetic instructions
including addition, subtraction, multiplication and division.
These instructions are used in mathematical applications
including the data `sorting' operations used in data base
applications. Simple processors often implement these
operations using two's complement integer arithmetic.
More complex algorithms involving floating point arith-
metic can be programmed using these primitive operations.
However, these programs often make intensive use of the
processor and are relatively slow and it is common
to enhance the performance of such processors by adding
arithmetic co-processors. More advanced processors have

System
control,
address
and data bus

Communication
networks

powerful built-in arithmetic capabilities including floating
point arithmetic units.

Most processors can also implement logic operations
such as NOT, AND, OR, and EXCLUSIVE OR (XOR)
which are implemented `bit-wise' by performing the opera-
tion simultaneously on each corresponding pair of bits in
the operands. These operations are used to perform the
`compare' or `find' operations used in database applica-
tions. Many processors can also implement shift/rotate
instructions which involve moving all the bits in a computer
word either to the right or the left. There are several pos-
sible form of shift, such as arithmetic and logical shifts and
logical rotations. (Few conventional high-level languages
give direct access to primitives for physical bit-level mani-
pulation.)

15.5.1.4 Machine control

These instructions control the mode of operation of the
processor. Many machine control instructions, such as
START/RESTART, HALT, STOP have a profound influ-
ence on the behaviour of the processor. Similarly, in event
driven systems, machine control instructions such as
INTERRUPT ENABLE/DISABLE and interrupt priority
control instructions affect the ability of the processor to
respond to external stimuli. Therefore, some processors
classify certain machine control instructions as `privileged
instructions' which can only be used if the processor is in a
special `systems' or `supervisor' mode that is used by systems
programmers. (Few conventional high-level programming
languages give direct access to machine-level primitives for
machine or interrupt control.)

15.5.2 Data objects and data types

At machine level textual, numerical and logical information
is represented by codes of binary digits and the processor in
not able to infer the context of any particular binary data

//integras/b&h/Eer/Final_06-09-02/eerc015

15/16 Microprocessors

object. Thus, the concept of data typing, in the high-level
sense, does not exist at machine level.

A processor handles such data in terms of the contents of
registers. Thus low-level primitive instructions transfer and
process data by reference to the architecture and registers
of the processor, such as input/output device registers, CPU
data registers and/or accumulators, and immediate-access
memory registers. Data typing at machine level is restricted
to specifying the length of a data object. Most low-level
assembly languages provide assembler directives which
allow the programmer to declare data objects by length,
assign symbolic names (identifiers) to the objects, and
provide initialising values for variables. When an assembly
language source program is translated into machine code,
the assembler enforces the data-type rules on the usage of
the declared data objects and allocates storage space at
machine level for all data objects.

Although limiting, low-level data types provide the build-
ing blocks for accommodating (storing and processing) the
more complex data types normally associated with high-
level programming languages. However, the efficient use of
high-level data types also depends on the availability of suit-
able addressing mechanisms for accessing data objects.

15.5.3 Instruction formats

Each computer instruction is stored in memory as binary
numbers and can be considered to comprise a number of
fields:

(1)	 Operation code (op-code): this part of the instruction
identifies the type of operation which is to be performed
(such as `add' or `jump'), the number and addressing
mode of the operands, and the addressing mode of the
resultand (if any).

(2)	 Operand field: this specifies either an immediate data
value (if immediate addressing) or the address of the
operand on which the instruction operation is to be
performed. The processor's data memory reference
mechanism will use the address information in conjunc-
tion with the addressing mode to compute the effective
address (physical address) of the operand.

(3)	 Resultand field: this specifies the address of the result-
and (corresponding to the addressing mode used). In
some processors, the resultand address is, by default,
the same as that of one of the operands, and when the
instruction is executed the resultand overwrites the
operand concerned.

The format of a typical instruction, such as ADD, for a
memory-to-memory architecture processor in which the
operands and resultands reside in immediate access memory
is shown in Figure 15.13. This type of instruction format has
the potential to generate multi-word instructions. For
example, a 16-bit microprocessor may have a 16-bit op-code
and either a 16, 20, 24 or 32 bit memory addressing
capability. The resulting instruction would be long and the
corresponding instruction fetch would require many memory
reference operations, which is inefficient. Many CPU archi-
tectures force the resultand to overwrite one of the oper-
ands, this gives some gain in efficiency since the resultand
address is, implicitly, the same as one of the operands. The
format of a typical instruction of this type is shown in
Figure 15.14.

In practice, many processors have a register-to-register
architecture where the operands and resultands are stored
in CPU data registers, which being few in number can be

Figure 15.13 Instruction formatÐexplicit resultand

Figure 15.14 Instruction formatÐimplicit resultand

addressed using very short direct addresses. This gives
some gain in efficiency, although separate MOVE instruc-
tions are required to load data from memory into the CPU
registers (the LOAD operations) and to return results to
memory (the STORE operation). The so-called LOAD-
STORE architecture, or register-to-register architecture
processor, is the default architecture for modern reduced
instruction set (RISC) processors. These processors commonly
have a CPU register file comprising 32 general-purpose
32-bits registers that can act as source registers for
operands and accumulators for resultands.

15.5.4 Addressing data objects

During the execution of an instruction, operands are
fetched from the addresses indicated in the operand field of
the instruction, and resultands are returned to the address
shown in the resultand field of the instruction. A number of
different methods of addressing operands have been devel-
oped. These address modes are used to introduce flexibility
by decoupling the logical address from the physical address,
to extend the address range of the memory that can be
accessed from an instruction, and to provide support at a
primitive level for the addressing mechanisms required in
advanced data structures. The data-memory reference sys-
tem is used to generate the physical address of a data object
from knowledge of the addressing mode and the values in
the operand field of the instruction and any associated
address registers.

The address modes commonly encountered for accessing
operands are as follows.

15.5.4.1 Immediate addressing

In this mode, the actual value of the operand is included in
the instruction, i.e. the operand address field is a literal.
This allows rapid access to the operand, but the value of
the operand is fixed by the program code. The operand
may be a data object, such as an integer constant, or an
address object. Typically, it is used to load small integer
constants into a register. (To avoid repeatedly using
immediate addressing to load the commonly used value
zero into CPU registers, many RISC processors have one
CPU `register' permanently hardwired to the value zero.)

15.5.4.2 Direct addressing

In this mode the value in the operand address field is the
address of the operand. There are two main variants of
direct addressing. In CPU register direct addressing the
address of the CPU register is given, as an explicit value,

//integras/b&h/Eer/Final_06-09-02/eerc015

in the address field of the instruction. Since most CPUs
have a small number of CPU registers, the address field
is restricted and this allows single word instructions. CPU
Register direct addressing is fast because the instruction is
short and the operands are already held in the CPU. It is
used extensively in register-to-register architecture proces-
sors, including RISC processors. In memory direct address-
ing the immediate access memory address of the operand
is given, as an explicit value, in the address field of the
instruction. In limited-word-length computers this means
that only a small area of memory can be assessed directly.
Also, this addressing mode is inflexible because the
address is embedded in the program code. It is
commonly used to access address constants, such as
input/output ports.

15.5.4.3 Indirect addressing

In this mode, the operand field of the instruction identifies
an address register (usually a CPU register) which holds the
address of the operand. The address register must be initial-
ised before use. In effect, the address-register acts as a
`pointer' to the operand. This removes the need for the
instruction to specify the absolute address, which introduces
flexibility. It also allows the operand to be accessed by a
one-word instruction. If the address register has accumula-
tor capabilities and can participate in arithmetic operations,
then the indirect address or pointer can be manipulated to
give access to complex data structures. For example, the
indirect address could be incremented during successive
passes through a loop of instructions.

Some processors have special mechanisms which allow an
indirect register to be decremented or incremented immedi-
ately before use (e.g. pre-decrement) or immediately follow-
ing use (e.g. post-increment). Such pointers can be used as
stack pointers which are automatically updated to point to
the `top-of-stack' following a PUSH or POP operation.

15.5.4.4 Indexed addressing

Indexing is used to address sequential data structures. The
effective address of a data object in the structure is formed
from the sum of two components; the address of (the start
of) the data structure and the index or offset of the object
relative to the start of the structure. The data-memory refer-
ence mechanism computes the effective address as the
instruction is executed.

Indexed addressing is normally implemented using two
CPU registers. An address-register is used (as in indirect
addressing) to point to the start of the data structure (the
address of the first object the structure) and a second regis-
ter, known as the index register, holds the offset address of
the data object. The index register usually has an accumula-
tor capability such that the index can be readily modified or
incremented. Modern processors often have a number of
address registers which can be used as pointers to data
structures and a number of index registers. An indexed
addressing instruction for such a processor would specify
both the pointer and index register.

15.5.4.5 Base and (relative) offset addressing

In this system of addressing, an address register is used as a
`base pointer' and points to the segment of memory allo-
cated to the data associated with a program. All references
to data objects are made relative to the base address. The
data memory reference mechanism automatically adds the

Program structures 15/17

base address of data segment when calculating the effective
address of a data object. Thus, in this system, direct
addresses, indirect address, and indexed addresses are
assumed to be relative to the base address. Thus all relative
addresses associated with the operand data can be calcu-
lated when the program is compiled or assembled and do
not require further alteration when the program is located.
This has the significant advantage that, as far as references
to data objects are concerned, the data segment can be
relocated easily because the executable program code
remains unchanged and only the value of the base pointer has
to be altered.

15.5.5 Addressing program code

The program-counter points to the location of the current
instruction and is incremented as each instruction is
executed in sequence. However, the value in the program-
counter is overwritten during unconditional and con-
ditional branch or jump instructions. In effect, the operand
of branch and jump instructions may modify the value of
the program counter. Branch and jump instructions employ
a variety of addressing modes:

15.5.5.1 Direct addressing

The value in the operand field of the instruction is the desti-
nation address of the branch or jump.

15.5.5.2 Indirect addressing

The operand field of the instruction identifies an address-
register which holds the destination address of the branch
or jump.

15.5.5.3 Relative addressing

The value in the operand field is interpreted as a positive or
negative binary number which is added to the current con-
tents of the program-counter to determine the destination
address of the branch or jump. This is usually quite efficient
because most destination addresses will be fairly close to the
instruction being executed. Since the offset of the relative
address is independent of the location of the code, the offset
can be determined as a constant when the program is
assembled or compiled and does not need to be altered
when the program is located. This has the significant advan-
tage that, as far as references to code locations are
concerned, the executable program code can be relocated
and only the initial value of the program counter has to be
changed.

15.6 Program structures

Certain program structures occur so frequently in program
design that it is worth looking at methods for implementing
them both at high-level and at assembly or machine level.
The implementations use both unconditional and condi-
tional jumps.

15.6.1 Selection

The `if-then-else' selective construct is used to select between
two alternative instructions (or processes). This high-level

//integras/b&h/Eer/Final_06-09-02/eerc015

15/18 Microprocessors

construct specifies the alternative processes and the condi-
tions under which they can be executed, for example:

if x > 0 then P1 else P2;

The decision part of this construct is implemented at
machine level by two distinct instructions:

(1) the	 evaluation of the conditional expression, which
must be a relational operation that returns a Boolean
result. When this is computed, the result is reflected by
the setting or resetting of one or more flags in the ALU
status register.

(2) the conditional branch which uses the relevant flags in
the status register as operands. When the conditional
branch instruction is executed it passes program flow
control to the selected process (i.e. if the condition is
true then branch to P1 else continue with P2). Note
that in the low level implementation an unconditional
branch instruction has to be inserted at the end of the
`else process' P2 to allow both alternative processes to be
stored in sequential memory, as shown in Figure 15.15.

15.6.2 Repetition

Consider a process which must be executed several times. If
the number of iterations is known, then a `for' loop would
be indicated; otherwise the loop structure could be imple-
mented using either as a `while . . . do' or a `repeat . . . until'
construct. The `repeat . . . until' construct should be used if
the process is to be executed at least once, otherwise the
`while . . . do' construct, which allows the possibility of an
exit before the process is executed, should be used. Since both
the `for' and `repeat . . . until' constructs can be derived from
the `while . . . do' construct, the `while . . . do' construct is

the primitive and is found in all high-level sequential and
concurrent programming languages.

15.6.2.1 `Repeat-until' construct

This repetitive construct allows a process to be executed at
least once. The number of times the process is executed
depends on a value of a control variable, for example:

count : �(number;
repeat

P1
until count <& 0 do ;

where the process P1 must update the loop control variable,
as in:

count : �(count �1;

Implementation of the `repeat-until' construct at low-
level requires an explicit loop control mechanism, with initi-
alisation and termination phases. The `repeat-until'
construct tests the exit condition at the end of the loop
as shown in Figure 15.16.

15.6.2.2 `While-do' construct

This construct provides for a process not to be executed, or
to be executed one or more times. The number of times the
process is executed depends on a value of a control variable,
for example:

count : �(number;
while count >&�(0 do

P1;

Figure 15.15 `If-then-else' construct	 Figure 15.16 `Repeat-until' construct

//integras/b&h/Eer/Final_06-09-02/eerc015

Figure 15.17 `While-do' construct

where the process P1 must update the loop control variable,
as in:

count : �(count �1;

Implementation of the `while-do' construct at low-level
requires an explicit loop control mechanism, with initial-
isation and termination phases. The terminating condition
must be evaluated at the start of the loop. The general form
of the `while-do' construct is shown in Figure 15.17.

15.7	 Reduced instruction set computers
(RISC)

15.7.1	 The reduced instruction set concept

The evolution in processor design during the 1980s and
early 1990s led to increasingly complex processor architec-
tures. The emerging 32-bit architectures accommodated a
good range of data types and a wide range of instruction
types and addressing modes. In addition, the flexible
instructions often allowed the user a free choice of the
addressing mode for the operands which resulted in many
permutations of (variable-length) instructions. Such pro-
cessors were characterised by the complexity of their
instruction sets, the complex sequences necessary to `fetch'
the variable-length instructions, and the complex and very large
instruction-decode logic. These processors were known as
complex instruction set computers (CISC) processors.

Analysis of the actual use of these processors showed that
the instruction set complexity often exceeded the needs of

Reduced instruction set computers (RISC) 15/19

many applications. Many users simply preferred to use a
familiar and well understood subset of the data types,
addressing modes, and instructions. In addition, it was
found that common programming constructs, such as con-
ditional expressions, were often formed using simple rela-
tional operations, such as `equals' and simple and short
constants, such as `zero'. Similarly, program branches
often had a short relative offset that could be accommo-
dated using short (16-bit) relative addressing. This led to
the notion of developing high-performance processors with
a reduced set of appropriate instructions.

15.7.2	 The reduced instruction set (RISC) processor

The reduced instruction set computer (RISC) processor has
a relatively simple register-to-register architecture which
focuses on a CPU register file of, say, 32 general purpose
32-bit registers. Each register may hold data or addresses
and can provide source operands and/or act as an accumu-
lator for resultands. Since data can not be transferred
directly between immediate-access memory and the ALU,
simple data transfer (LOAD) instructions are used to trans-
fer operand data from immediate-access memory to CPU
registers so that it can be processed subsequently by the
ALU. Similarly, simple data transfer (STORE) instructions
must be used to transfer result data from CPU registers to
immediate-access memory. Thus, if X, Y, and Z are stored
in immediate-access memory, the high level expression
X: �(Y �Z must be implemented using four separate
instructions.

R1: �(Y LOAD operation, load CPU register R1
with Y from memory

R2 �(Z LOAD operation, load CPU register R2
with Z from memory

R3 �(R1 �R2 ALU operation, write into CPU register R3
sum R1 �R2

X: �(R3 STORE operation, store CPU register R1
as X in memory.

The apparent disadvantage of using four low-level instruc-
tions to implement one higher-level memory-to-memory
instruction is partially offset by the simple format of the
RISC instructions. Register-to-register architecture pro-
cessors have relatively short instructions since there is at
most only one immediate-access memory reference opera-
tion (to load or store an operand) per instruction. This
leads to the notion of using fixed-length instructions. A
typical 32-bit RISC processor with 32 CPU registers will
use a 32-bit fixed length instruction with, say, a 6-bit
op-code, 5-bit direct addressing of CPU registers, and
relative (base and offset) addressing of immediate-access
memory using 16-bit relative addresses or immediate data.
Thus LOAD and STORE instructions may consist of the
6-bit op-code, a 5-bit CPU register address for the operand
or resultand, and an immediate-access memory address
comprising a 5-bit base (register) address and a 16-bit rela-
tive offset. Similarly, an ALU instruction may comprise
the 6-bit op-code, and either three 5-bit CPU register
addresses (plus scope for instruction extensions), or two
5-bit CPU register addresses and a 16-bit immediate-data
object. The use of a 32-bit instruction, which can be
`fetched' in a single memory reference operation, results
in a fast instruction cycle and much simplified instruction
decoder logic. The performance of RISC processors is
further enhanced by the use of multi-stage instruction-
pipelines.

//integras/b&h/Eer/Final_06-09-02/eerc015

15/20 Microprocessors

Counter Unit

Immediate-
access data

CPU
Register
file

ALU

address
calculation

Immediate-
access

ALU
status
flags

Register

Op-code

Program

memory

Branch instruction
memory

1ST STAGE 2ND STAGE 3RD STAGE 4TH STAGE 5TH STAGE

Instruction
Buffer

Op-code, Op code, - Op code, - Op code, -
operand or operands, Load operand Store operand
resultand operand or or ALU resultand, or ALU resultand,
addresses, resultand operand or operand or
or immediate data address, resultand address resultand address
or address or immediate data

or addess

Figure 15.18 Simplified instruction pipeline

15.7.3 Instruction pipelines

The conventional instruction `fetch' and `execute' cycle
imposes speed constraints on a processor. The primary pro-
blem is the time taken to access immediate-access memory,
both to `fetch' the instruction and to read operands during
LOAD instructions, or to write operands during STORE
instructions. In each case the processor ALU is idle (not
processing data) while the memory reference operation is
taking place. This limitation can be overcome, to a large
extent, by the notion of pipelining.

The basic idea of pipelining is to partition the processor
into autonomous operational or functional units that can
operate concurrently, (such as instruction `fetch' from
immediate-access memory, program counter update, CPU
register-file read, ALU operation, write operation on
immediate-access data memory, read operation on immedi-
ate-access memory read, CPU register-file write). Typically,
this allows the process of `fetching', decoding and executing
an instruction to be split into the following stages.

(1) Instruction `fetch' and program counter update.
(2) Operand read from CPU register file.
(3) ALU	 operation or effective address calculation (for

LOAD and STORE).
(4) Immediate-access	 data memory read (for LOAD)

or write (for STORE).
(5) Resultand (ALU operations) or operand (for LOAD)

write to CPU register file.

In effect, the traditional instruction register is replaced by a
pipeline of instruction buffers each of which store the infor-
mation (opcode, CPU register addresses, memory reference
address, operands, resultands, ALU status) necessary to
carry out subsequent phases of the instruction cycle for
each instruction, Figure 15.18. Thus, such a pipeline will
normally contain five sequential instructions, and each
stage of the pipeline will have the information and resources
required to autonomously implement its stage of the
instruction cycle. In addition, each stage includes at most

one immediate-access memory reference operation, thus
allowing fast (average) instruction throughput.

In practice, the pipeline speed-up is restricted by physical
resource constraints (resource hazards) and temporal
data access constraints (data hazards). For example, if the
instruction memory and data memory share the same
address and data bus (as in von Neumann architecture pro-
cessors), then an immediate-access data memory reference
operation for an instruction in stage (4) of the above pipe-
line can not take place concurrently with the instruction
`fetch' operation for a successor instruction in stage (1) of
the pipeline, and a resource hazard occurs. This results in
the need to stall the pipeline (with respect to the successor
instructions) until the data buses are free. This problem can
be overcome at some cost by adding resources, such as sepa-
rate instruction and data memories (as in Havard architec-
ture processors). Data hazards typically occur when an
instruction attempts to use the results of a preceding
instruction, but due to pipelining the results are unavailable.
For example, the results of the preceding instruction in the
pipeline may still be being computed or may not have been
written back into the CPU register file at the point at which
they are required as operands by the successor instruction.
Such problems can be solved either by invoking pipeline
stalls or by designing additional fast-track data paths
which make results available direct from the ALU. Data
hazards may occur in sequences of data processing opera-
tions, or in flow control operations when branches may be
conditional on data generated by previous instructions.

A related problem affecting the performance of pipelined
processors arises when computing decisions, such as
IF-THEN-ELSE constructs, that involve alternative
sequences. The instruction pipeline usually operates on the
assumption that the instructions form a natural sequence,
and no allowance is made for the presence of alternative
sequences. Consequently, when the condition governing
the branch-decision is computed (in stage (4) of the above
pipeline), presumed-sequence instructions are already being
processed in stages (1), (2) and (3) of the pipeline. If the

//integras/b&h/Eer/Final_06-09-02/eerc015

Software design 15/21

branch is taken, the presumed-sequence instructions have
to be deleted (or `flushed') from the pipeline and the `branch-
taken' instructions `fetched' and processed.

Modern RISC processors use many techniques to over-
come these performance restrictions. Multi-stage pipelines
may be used (up to 20 stages) to maximise concurrency.
Multiple pipelines may be used to accommodate both of
the alternative sequences for a decision, and this removes
the delay associated with flushing and re-filling a pipeline.
Persistent data (regularly used data objects) may be main-
tained in the CPU register file to reduce the need for multiple
LOAD and STORE operations. First and second level high-
speed access cache memories may be used for instructions
and data to overcome the delay associated with accessing
immediate-access memory. In all cases, the processor design
process involves compromise between performance, com-
plexity and cost. General purpose microprocessors
and workstations often seek to maximise performance.
Alternatively, in embedded applications, performance and
complexity are often costly in terms of silicon area or
`real estate'. In an interesting development, proprietary
embedded RISC processors are now available in a range of
variants so that the designer can choose the level of perfor-
mance, complexity, word length, and silicon area.

15.8 Software design

The process of software development involves turning the
specification of the task to be performed into a program in
a form which the processor can directly execute. The start-
ing point for the design of such a system is the derivation
of the system requirements specification. The specification
should state what the system should do in a formal and
precise manner. However, the requirements specification
should not state how the task should be carried out or how
it should be implemented.

The design procedure is normally a `top-down' approach
in which the requirements specification is translated into a
design by a process of elaboration. The description of what
the system should do is elaborated until the description
comprises a set of easily implemented activities. In most
design methods, the formal system specification will be ana-
lysed and decomposed on a functional basis. Careful con-
sideration should be given to determining when to take
decisions that bind or constrain the design, such as the
choice of programming notation or processing architecture.

The design procedure often consists of a compromise
between taking an early decision to map the problem onto
a known implementation, such as a particular high-perfor-
mance architecture, or delaying such decisions to retain the
freedom of choice in design and implementation. It is desir-
able that the process of analysis is not subject to imple-
mentation constraints before the analysis has revealed the
characteristics of the problem. This is particularly import-
ant if the designer is to exploit fully the advantages that can
be obtained by using modern programming notations and
processing hardware.

In applications which involve safety functions or have
implications for safety, the system must perform in a reli-
able and safe manner. Ideally, the designer should prove the
correctness of the design and the design should be trans-
lated into an implementation using proven translators.
Finally, the implementation should be verified to show
that it is fit for its intended use. However, current formal
proof techniques require high levels of skill; they are also
lengthy and are not efficient for complex systems.

15.8.1 Program development

The design and development of the computer programs or
software is not a trivial task. Even a relatively simple pro-
gram can have a sophisticated logical structure. Large soft-
ware systems can have considerable complexity and special
software engineering and management techniques have
been developed to ensure that such systems can be designed
and developed to the required quality within a specified
time-scale and budget. The methods place considerable
emphasis on the need to document relevant aspects of a
system design including the test phase, they also address
the important problem of maintaining a system throughout
its lifecycle. They also provide a range of computer-aided
software engineering tools to support the design activity.

Good software design techniques, such as structured
programming, are used to produce readable, reliable and
understandable programs. A restricted set of programming
constructs or processes is allowed: sequential processes,
selection, and repetition (see Section 15.6). Each such pro-
cess has a single input and output and can be readily docu-
mented, tested and understood. Complex processes can be
decomposed into a hierarchy of simpler sub-processes, each
of which can be declared as subprograms or procedures to
hide unnecessary detail. This improves the legibility of a
program and helps the problem of managing complexity.

The structured programming approach leads naturally to
a modular approach to program construction. The program
is divided into modules, each comprising separate code and
data. The data within any module is local to that module
and communication between the modules has to be declared
and is strictly controlled. This limits the interaction between
modules and helps prevent error migration. It also
encourages the documentation of module interfaces and
inter-module actions; an understanding of this is essential
when a program is modified.

15.8.2 Assembly languages

Programming languages may be either high-level and
oriented to the solution of a particular class of problems,
or low-level and oriented towards the architecture of a
particular machine.

Assembly-language allows the designer to program in
terms of the machine instructions that a specific processor
can perform. Since binary machine-code instructions are
difficult to understand directly, assembly-language pro-
grams are expressed in a symbolic notation. There is a one-
to-one correspondence between each assembly-language
instruction and a machine-code instruction.

Assembly-language programs have to be written in terms
of the specific processor's instruction set and architecture,
such as its CPU registers, memory locations, and input/out-
put device registers. Also, memory storage has to be allo-
cated explicitly for data objects using primitive data types.
Assembly-language uses mnemonics for each machine level
instruction. The mnemonics are usually specific to one pro-
cessor or a family of processors and are chosen such that
the function of the instruction is fairly obvious (e.g. ADD,
SUB, MOV, etc.). In addition, the user has to define sym-
bolic names for data objects such as variables (memory
addresses), data constants, and labels (code locations).

The low-level code is translated into machine-code by a
simple process of transliteration, this is usually carried out
by a program known as an assembler. The assembler checks
the syntax and usage of each of the instructions in the
source text (the `source code'), and produces cross-refer-
ences for any jump, branch, or data access instructions.

//integras/b&h/Eer/Final_06-09-02/eerc015

15/22 Microprocessors

The output of the assembler (the `object code') can then be
`linked' with any library routines or external subroutines
which are called from the program, and `located' by insert-
ing into the file the absolute addresses of the memory loca-
tions where the program code and data will loaded in the
target system.

The unstructured nature of assembly-language programs
increases the problem of testing such software. It is made
even more difficult because testing conventionally takes
place at machine level, rather than at the level of the sym-
bolic assembly language. Normally, the software is executed
on simulator, or on a target processor equipped with moni-
tor program, with facilities for memory and CPU register
examination, and for the insertion of breakpoints which
allow the programmer to inspect and change memory or
register contents at specified points in the program. Such
testing requires skill, care and good management if it is to
produce usable results.

Assembly-language programming, which requires a
detailed understanding of instruction sets and processor
architecture, is normally only necessary in applications
where it is critical that the processing models and program-
ming constructs used in the design are supported properly
at machine level. Typical examples are compilers, the
kernels of operating systems, interface software including
interrupt handling, and certain aspects of real-time soft-
ware. This is the province of the `systems programmer'
rather than the `applications programmer'.

Knowledge of assembly language programming is
not essential for general applications programming.
Specifically, due to the lack of high-level constructs, assem-
bly-language programs normally comprise an intimate
mix of low-level program flow-control instructions and
architecture-dependent data-processing instructions. Such
programs are often difficult to design or comprehend. Thus,
a programmer is advised to always use the highest level
programming language appropriate for an application.

15.8.3 High-level languages

Instead of writing the programs in the assembly language of
a processor, a high-level language can be used. The advan-
tages to writing programs in a high-level language are as
follows:

(1)	 Hardware independence: the language is independent of
the implementation hardware and can be compiled for a
range of target processor.

(2)	 High-level notation: the language comprises unambigu-
ous statements which are often close to those used to
express problems in natural language. This aids com-
prehension and increases the speed of programming.

(3)	 Structured code: most high-level languages support
structured programming and modular program con-
struction.

(4)	 Data types: most high level languages support a wide
range of data types which allow checks on expression
validity to be applied by the compiler.

(5)	 Maintenance: clear program and data structures give
easier program maintenance.

Few conventional high-level languages give direct access
to machine-level primitives that are used for physical input
and output, bit-level manipulation, machine control, and
interrupts. Therefore, programs written in conventional
high-level languages are normally restricted to using idealised
input and output (e.g. to files) and are run in a protected
environment provided by the operating system. However,
this is not always sufficient for `systems' programmers

who are concerned with how the software, including the
operating system and user programs, operates and performs
and how it interfaces with the outside world. Thus, the pro-
gramming languages used by systems programmers, such as
`C', typically include both high-level constructs and
machine-level primitives.

A high-level language program is prepared as a source
text file using a text editor (or using a word processing
facility capable of producing a text file in the required
format). The high-level language program is translated
into an object program (i.e. nearly executable machine
code) by a compiler. At the start of the compilation pro-
cess, the compiler will check the syntax of the source
program and any errors detected will be reported. During
the compilation process, each construct or statement in the
source program is translated into one or more lines of
object code. The compiler may require several passes to
convert the source program into the object code. Also,
error checking may be included within the object code
to detect run-time errors, such as array bounds exceeding
predefined limits.

The compiler must be informed of the identity of the
processor on which the compiled program is to run, so that
it can produce processor-specific object code. Normally,
the object code is generated for the processor on which
the compiler runs. However, in the case of microprocessor
systems, it is common to prepare programs on larger com-
puters with better software engineering support facilities
and to compile the source program for the intended target
processor (this is known as cross-compilation).

The object code produced by the compiler requires
linking, locating and loading before it can be executed,

Figure 15.19 Stages in program development

//integras/b&h/Eer/Final_06-09-02/eerc015

Embedded systems 15/23

as shown in Figure 15.19. The linker resolves all external
references in the object code, such as references to library
subroutines or other program modules held as object files,
and combines all these modules into a single executable
program. It also locates the program by adjusting the
addresses all data memory references (variables) and code
location references (labels) to the values of locations at
which the code and data will be loaded. (In the case of
relocatable code and data, it simply calculates the correct
base addresses.) Finally, the linked object modules are
loaded into memory at a defined location by the loader
ready for execution. (For ease of communication, the
object program is often downline loaded into the target
processor in HEX form, and converted into binary by the
loader during the loading process.) When the program is
loaded, it is resident in memory in the target machine
ready for execution.

15.8.4 Real-time processes

Many engineering systems, such as embedded computer
real-time systems, are required to maintain synchronism
with an asynchronous external system, or to respond to
stimuli from such a system, within a finite and specified
delay. In real-time programming there is a primary need
for a mechanism for handling the concept of time. Real-
time sequential programming languages include an addi-
tional primitive construct that allows the formal inclusion
of time.

An application is said to be `time-critical' if it must per-
form activities and produce responses at times dictated by
an external environment. Typically in real-time control, a
precise time-window is specified during which sensors must
be sampled, a satisfactory control response computed, and
output values sent to actuators. This schedule may re-occur
periodically, or be initiated at irregular intervals by stimuli
from the external system. Failure to perform the required
functions in time is a fault; this may lead to system failure
and may be hazardous.

The software for a time-critical application will comprise
processes that must be properly synchronised with each
other and with the external system. Synchronism with the
external system is usually imposed by a `real-time clock'
driven schedule; these times will not be dictated by the
optimum use of computing resources. To ensure that com-
ponent processes do not overrun, it is common to place
(critical) timing requirements on software execution and
to provide a `time-out' mechanism to warn of timing
violations.

It is conventional to monitor the performance of a time-
critical application process. Traditionally, this is done using
a real-time time-lapse counter built as an external circuit.
The counter is preset to trip after a pre-determined time
and is initiated to run concurrently with the time-critical
process. The first process to complete causes the other to
abort. The mechanism is known as a `watch-dog' timer.

If the application process has been properly designed, it
will produce results well before the maximum allowed time
and the `watch-dog' timer will be aborted. The expiry of a
`watch-dog' timer or `trip' indicates the presence of a fault
(which may be a software design fault or a transient or
permanent malfunction of the system) and appropriate
fault recovery activities should be invoked. It is therefore
necessary to set the pre-determined trip period to somewhat
less than the time-critical time so that fault recovery can
take place and the system can still provide a timely and
satisfactory response.

15.8.5 Embedded real-time operating systems (RTOS)

A number of proprietary real-time operating systems
(RTOS) are available for use in embedded microprocessor
systems. These operating systems typically provide input/
output handling, deterministic real-time task scheduling,
watchdog facilities, and default behaviour under fault
conditions. They are also characterised by having modest
memory requirements. Significantly, these operating systems
are targeted at a range of processors including conventional
microprocessors, commercial off-the-shelf (COTS) micro-
computers, embedded controllers (microprocessors with
built-in analogue and digital signal acquisition and output
generation), and the more recently introduced system-on-
chip (SoC) systems with on-chip embedded processors.

15.9 Embedded systems

Many products have computers, microprocessors, or micro-
controllers hidden or embedded within them. Some devices,
such as digital organisers or personal digital assistants
(PDAs), resemble small computers and the user may be pro-
vided with limited programming facilities for the embedded
processor. In the case of other products, such as video
games machines or consoles, it is fairly obvious that the
device contains embedded processors and video display gen-
erators, even though the user is given little or no facility for
programming the device. A much wider range of products
contains embedded processors that are hidden or invisible
to the user. For example embedded processors
are commonly found in the following: cellular or mobile
telephones, automobile electronics (such as engine manage-
ment, braking systems, active suspension, intelligent sensing
for lights or windscreen wipers, navigation systems, and
both in-car and in-seat entertainment systems), office auto-
mation products (such as faxes, scanners, printers, copiers
or duplicators, multimedia display projectors, computer
network switches), domestic appliances (such as washing
machines, dishwashers, tumble driers, cookers or ovens,
microwave cookers, food blenders and processors, weigh
scales, and vacuum cleaners), home entertainment units
(such as radios, televisions, satellite receivers, digital
set-top boxes, video cassette recorders, digital video disc
(DVD) players, and hi-fi units), photographic equipment
(such as film and digital cameras, analogue and digital
video cameras) and personal or `wearable' electronics (such
as portable radios and CD players, MP3 players, watches,
and fitness monitors). The trend is to increase significantly
the sophistication of such systems, including user adapta-
tion or personalisation, and to increase very significantly
the data handling and processing requirements of the
embedded processor. This is leading to the development
of extremely powerful processors that are designed specifi-
cally for embedded applications, including small battery-
powered products.

15.9.1 Embedded processors

The designer of embedded systems can choose from a
wide range of processors. Classical microcontrollers, with
integrated analogue inputs and outputs, are often used in
control applications for domestic appliances or automotive
systems. Specialist microcontrollers have been developed for
applications such as electric motor control, or servo control.
Traditional microprocessors or RISC processors may be used
as stand alone devices within a more complex design.

//integras/b&h/Eer/Final_06-09-02/eerc015

15/24 Microprocessors

Increasingly, the trend is to minimise the number of com-
ponents in an embedded system. Traditionally, conventional
microprocessors tend to be poorly suited to integration within,
say, an FPGA since they are relatively complex and are not
scalable (i.e. smaller versions can not be readily generated),
although these constraints may become less important as
the size of FPGAs increase. RISC processors are much better
suited to integration because they have powerful ALUs, small
instruction sets and instruction decoders, and are scalable in
terms of word-length, concurrent resource, instruction pipe-
line, and clock speed. Embedded RISC processors are readily
available as intellectual property (IP) cores.

Traditionally, IP cores have taken the form of hardware
description language (HDL) software macros, which a
designer incorporates within an application-specific design.
However, the performance of such IP cores is layout depend-
ent, and very careful design is necessary to achieve good
speeds. Therefore, the preferred method of deriving high-
performance designs is to use a proprietary `hard' IP core
that provides guaranteed performance (i.e. an IP core that
has been pre-mapped into a fixed and full-tested hardware
layout on the intended FPGA target). The second advan-
tage of using proprietary `hard' IP core RISC processors is
that they are usually fully supported by proprietary
embedded real-time operating system (RTOS) software
and software tools for writing applications (such as editors
and compilers). Thus the embedded systems design
approach typically involves:

(1) Determining the application's processing requirements
and selecting a proprietary `hard' IP RISC processor of
appropriate performance, complexity, word length, and
silicon area.

(2) Selecting a proprietary embedded RTOS that supports
the processor.

(3) Developing application-specific software for software-
implemented functions.

(4) Developing digital designs for any hardware-implemen-
ted functions and interfaces.

Reconfigurable FPGA

15.9.2 System on chip (SoC) design

The increase in size of VLSI logic circuits has led to a new
generation of reconfigurable FPGA devices that provide a
platform for `hard' IP cores and are large enough to contain
a complete high-performance digital processing system
within a chip. These FPGAs are commonly called System
on Chip (SoC) devices. An SoC device can be configured
to include both `hard' and `soft' IP cores, plus user-designed
digital circuits, Figure 15.20. At the heart of most SoC
designs are an embedded proprietary RISC processor and
a block of RAM memory (for the software that runs on the
processor). This allows the designer to partition a design
into those parts that will be implemented as software
executing on the embedded processor (under an appropriate
embedded RTOS) and those parts that will be implemented
in hardware as high-speed application-specific logic circuits.
This design approach, known as co-design or co-ware, has
the significant advantage that established and high-perfor-
mance parts of the design can be committed to application-
specific hardware, and more adventurous parts of the
design or low-speed functions can be committed to easily
changed software.

The high-performance hardware implemented applica-
tion-specific logic circuits may make extensive use of both
`hard'- and `soft'- IP cores. In particular, SoC devices
commonly provide co-processor support for digital signal
processing, typically using a proprietary `hard' IP digital
signal processor (DSP). Alternatively, specific algorithms
may be implemented using either `hard'- or `soft'- IP digital
signal processing circuits. Similarly, signal acquisition may
be facilitated using mixed-signal (digital/analogue) com-
ponents such as analogue-to-digital (A/D) or digital-
to-analogue (D/A) convertors. The problem of interfacing
such major components is eased by the on-chip provision
of advanced data highways or buses, standardised bus
interfaces (for the major components such as the RISC/
DSP processors and the memory), sophisticated clock
generators, and a clock management unit.

System
control,
address
and data bus
with
standardised
interfaces

‘Hard’-IP
RISC
processor

‘Hard’-IP
DSP management

and test
subsystem

‘Soft’-IP
digital
circuits

‘Hard’-IP
High-speed
input/output

Memory Clock

Configuration Mixed-signal

Communication Analogue Configuration
networks, input/output and test data
peripherals and
displays

Figure 15.20 Typical system-on-chip (SoC) configuration

//integras/b&h/Eer/Final_06-09-02/eerc015

Embedded systems 15/25

External interfacing is facilitated by the use of `hard' IP
cores that support a wide range of high-bandwidth interface
standards (for high-speed serial and parallel interfaces,
including either system- or source-synchronous parallel
interfaces). This is an area of on-going development, and
both the SoC vendors and third-party IP providers are
developing IP cores to support the ever widening range of
communications protocols and interface standards found in
the embedded systems market.

Modern SoC devices and the co-design approach, (invol-
ving embedded RTOS software, `soft'- and `hard'-IP cores,
and bespoke digital design), provides a manageable and
flexible route to embedded systems design. It may also
change the relative roles of the hardware and software

designer in the development of SoC designs. The reconfi-
gurable SoC devices can be deployed in a wide range of
applications and the common-platform nature of the
devices helps avoid the non-recurring costs associated with
fully bespoke designs. The extensive use of `hard'- and
`soft'-IP from SoC vendors and third party suppliers mini-
mises risk and facilitates time-to-market which gives com-
petitive advantage. However, it also involves entering into
IP license arrangements for both product development and
deployment. It will be interesting to see whether the rapidly
decreasing SoC product design cycles are complemented by
corresponding decreases in the time, complexity, and cost of
negotiating multi-party IP license agreements.

//integras/b&h/Eer/Final_06-09-02/eerc015

