
//integras/b&h/Eer/Final_06-09-02/eerc014

Digital Control
14 Systems

14.1 Introduction 14/3
14.1.1 14/3
14.1.2 14/3
14.1.3 14/3

14.2 14/5
14.2.1 Introduction 14/5
14.2.2 Speed 14/5
14.2.3 14/6
14.2.4 14/6
14.2.5 14/6
14.2.6

14/7
14.2.7 14/8
14.2.8 14/9
14.2.9 14/9
14.2.10 14/10

14.3 14/11
14.3.1 Introduction 14/11
14.3.2 14/12
14.3.3 14/13
14.3.4 14/14
14.3.5

representations 14/16
14.3.6

method 14/16
14.3.7 14/17
14.3.8 14/18
14.3.9 14/18

14.4 Storage 14/19
14.4.1 Introduction 14/19
14.4.2 14/19
14.4.3 14/21
14.4.4 14/22
14.4.5 14/22

14.5 14/23

14.6 14/24
14.6.1 14/24
14.6.2 14/25
14.6.3 14/27
14.6.4 14/27

14.7 14/27
14.7.1 14/27
14.7.2 14/29
14.7.3 14/29
14.7.4 14/30

14.8 14/30

14.9 14/33
14.9.1 14/33
14.9.2 14/33

14.10 14/34

14.11 14/36

E A Parr MSc, CEng, MIEE, MInstMC
CoSteel Sheerness

Contents

Analog and digital circuits
Types of digital circuits
Logic gates

Logic families

Fan in/fan out
Noise immunity
Transistor transistor logic (TTL)
Complementary metal oxide semiconductor
(CMOS) logic
Emitter coupled logic (ECL)
Open collector and tri-state outputs
Schmitt triggers
Choosing a logic family

Combinational logic

Truth tables
Boolean algebra
Karnaugh maps
Conversion between P of S and S of P

Formal minimisation, the Quine-McCluskey

Hazards, races and glitches
Integrated circuits
UCLAs, PALs and PLAs

Cross coupled flip flops
D type flip flop
The JK flip flop
Clocked storage

Timers and monostables

Arithmetic circuits
Number systems, bases and binary
Binary arithmetic
Binary coded decimal (BCD)
Unit distance codes

Counters and shift registers
Ripple counters
Synchronous counters
Non binary counters
Shift registers

Sequencing and event driven logic

Analog interfacing
Digital to analog conversion (DAC)
Analog to digital converters (ADCs)

Practical considerations

Data sheet notations

//integras/b&h/Eer/Final_06-09-02/eerc014

//integras/b&h/Eer/Final_06-09-02/eerc014

Introduction 14/3

14.1 Introduction

14.1.1 Analog and digital circuits

Signals in process control are conventionally transmitted as
a pneumatic pressure or electrically as a voltage or current.
These signals are said to be continuously variable in that
they can take any value between the two extreme limits.
Such systems are called analog systems.
Digital circuits are concerned with signals that can only

take certain values. Most digital circuits deal with electrical
signals that can only have two values; 5 V or 0 V for example.
Many circuits are inherently of this type, a light can be on
or off, a valve open or shut, a motor running or stopped.

14.1.2 Types of digital circuits

Digital applications can, in general, be classified into three
types. The simplest of these are called combinational logic
(or static logic), and can be represented by Figure 14.1.
Such systems have several digital inputs and one or more
digital outputs. The output states are uniquely defined for
every combination of input states, and the same input com-
bination always gives the same output states.
A sequencing logic system is superficially similar to Figure

14.1 but the output states depend not only on the inputs but
also on what the system was doing last (i.e. its previous
state). Sequencing systems therefore have memory and
storage elements. A very simple example is the motor starter
of Figure 14.2(a). The start input causes the motor to start
running and keep running even when the start signal is
removed. The stop input stops the motor. The action is
summarised on Figure 14.2(b). Note that with neither signal
present the motor could be running or stopped dependent
on which signal occurred last; i.e. the output state is not
defined solely by the present input states.
The final group of digital systems uses digital signals to

represent, and manipulate, numbers. Such systems cover the
range from simple counters and digital displays to complex
arithmetic and computing circuits.

Figure 14.1 Representation of a combinational logic system. The
output states are defined only by the input state

14.1.3 Logic gates

The simplest digital device is the electromagnetic relay,
and it is useful to describe some of the fundamental ideas
in terms of relay contacts. In Figure 14.3(a), the coil Z will
energise when contact A and contact B and contact C are
made. The series connection of contacts performs on AND
function.
Similarly, in Figure 14.3(b) the coil Z will energise when

contact A or contact B or contact C are made. The parallel
connection of contacts performs an OR function.
In Figure 14.3(c), coil Z is energised when the push but-

ton is pressed. A normally closed contact of Z controls coil
Y. When Z is energised, Y is de-energised and vice versa.
The normally closed contact can be said to invert the state
of its coil.

Figure 14.3 Simple relay logic: (a) AND combination, relay Z is
energised when A & B & C are all energised; (b) OR combination,
relay Z is energised if A or B or C is energised; (c) Inversion, relay Y is
energised when PB1 is not made

Figure 14.2 A simple sequencing system: (a) representation of a start/stop motor starter; (b) operation, the output depends not only on the input
state, but also on the last operation

//integras/b&h/Eer/Final_06-09-02/eerc014

14/4 Digital control systems

Combinational logic circuits are built round combina-
tions of AND, OR and INVERT circuit. In Figure 14.4(a),
for example, Z will be energised for:

(A not energised) AND (B energised OR C energised)

Such verbal descriptions are impossibly verbose for more
simplex combinations. Circuit operations are more conveni-
ently expressed as an equation. Normally closed contacts
are represented by a bar over the top of the contact name

+ 12V
Z
0
0
0
1

B
0
1
0
1

A
0
0
1
1

Z
A

B

(a) (b)�(e.g. A, verbalised as A bar). The circuit of Figure 14.4(a)
can then be represented as:

Z �(�A AND �B OR C�(
Similarly the circuit of Figure 14.4(b) (commonly used for

stairwell lighting) can be represented by:
� �Z ��A AND B� OR �A AND B�(

AA Z&
B

Z
B

(c)
(d)These are known as Boolean equations, a topic discussed

further in Section 14.3.3.
Figure 14.5 A simple diode based AND Gate: (a) circuit; (b) truth

(typically 10 to 20 operations per second), bulky and power table; (c) logic symbol; (d) BS logic symbol

hungry. Electronic circuits performing similar functions are

Relays can perform all logic functions but are slow

called logic gates. These work with signals that can only
have two states. A signal in CMOS logic, for example, can
be at 12 V or 0 V and could represent a limit switch made or
open. The two logic states can be called high/low, on/off,
true/false and so on. The usual convention, however, is to
call the higher voltage `1' and the lower voltage `0'. For a
CMOS gate, therefore, 12 V is 1 and 0 V is 0.
Figure 14.5(a) shows the circuit of a simple AND gate.

Neglecting diode drops, the output Z will be equal to the

ZBAA

–12V

0
1

0
1

0
0

Z

B
1
1

0
1

1
1

lower of the two input voltages. In other words, it will be a 1 (a) (b)
if, and only if, both inputs are 1. This can be represented by
Figure 14.5(b) (which is called a truth table). On circuit dia-
grams it is clearer to use logic symbols rather than the actual
circuit diagram. The symbol for an AND gate is shown on
Figure 14.5(c); the output Z being 1 when A AND B are both 1.
On Figure 14.6(a) the output Z will be equal to the higher

A

B
Z

A

B
≥1 Z

(c) (d)

Figure 14.6 A simple diode based OR gate: (a) circuit; (b) truth table;
(c) logic symbol; (d) BS logic symbol

Figure 14.6(b). The logic symbol for an OR gate is shown
on Figure 14.6(c).
The invert function is given by the simple saturating tran-

sistor of Figure 14.7(a). When A is 0, the transistor is turned
off and the output Z is pulled to a 1 state by the collector
load resistor. When A is 1, the transistor is saturated on
taking Z to 0 V; a 0. The circuit behaves as the truth table
of Figure 14.7(b) and has the logic symbol of Figure 14.7(c).
Combinational logic circuits can be drawn purely in

terms of AND gates, OR gates and inverters. The stairwell
lighting circuit of Figure 14.4(b) is drawn with logic symbols
on Figure 14.8(a). This behaves as the truth table of Figure
14.8(b) which shows that Z is 1 if only one input is 1. This
circuit is known as an Exclusive OR and is sufficiently com-
mon to merit its own logic symbol shown on Figure 14.8(c).
If an inverter is used after an AND gate as Figure 14.9(a),

the truth table of Figure 14.9(b) is produced. This arrange-
ment is called a NAND gate (for NOT-AND) and has the
logic symbol of Figure 14.9(c). The NAND gate is probably
the commonest logic gate.
Adding an inverter to an OR gate as Figure 14.10(a) gives

the truth table of Figure 14.10(b). This is known as a NOR
gate (for NOT-OR) and is given the logic symbol of Figure
14.10(c).

of the two inputs (again neglecting diode drops). Z will
therefore be 1 if either input is 1 giving the truth table of

Figure 14.4 More complex relay logic: (a) Z is energised when (A is
not energised) AND (B is energised OR C is energised); (b) Stairwell
lighting circuit. A and B are the switches at the top and bottom of the
stairs. Changing either switch will change the state of relay Z

//integras/b&h/Eer/Final_06-09-02/eerc014

Logic families 14/5

Z
1
1
1
0

B
0
1
0
1

A
0
0
1
1

Z
A

B
1
0

Z

0
1

A

Z

+ 12V

(c) (d)

Figure 14.9 A NAND gate: (a) circuit; (b) truth table; (c) logic symbol;
(d) BS logic symbol

(c) (d)

Figure 14.10 A NOR gate: (a) circuit; (b) truth table; (c) logic symbol;
(d) BS logic symbol

The delay is called the propagation delay and is defined
from the mid point of the input signal to the mid point of
the output signal. Typical values are around 5 nS for TTL.
The edge speeds are defined by the rise time (for the 0 to 1

edge) and the fall time (for the 1 to 0 edge). These are meas-
ured between the 10% and 90% points of the output signal.
Typical values are 2 nS for TTL.
Propagation delays and rise/fall times determine the max-

imum speed at which a logic family can operate. TTL can
operate in excess of 10 MHz, basic CMOS around 5 MHz
and ECL at over 500 MHz (although considerable care
needs to be taken with board layout at speeds over 10 MHz).

14.2 Logic families

14.2.1 Introduction

Most logic circuits are constructed from integrated circuits,
and have high operating speed and well defined levels.
Two logic families (TTL and CMOS) are widely used in
industrial applications and a third family (ECL) may be
encountered where very high speed is required. Before
these are described, we must first examine how the various
factors of a logic gates performance are specified.

14.2.2 Speed

A logic gate does not respond instantly to a change at its
input. For infinitely fast input signals the output will be
delayed and the edges slowed as shown on Figure 14.11.

Z

& Z

1
0
0
0

Z
0
1
0
1

B
0
0
1
1

A

Z
A

B

(a) (b)

≥1

OV
(a) (b)

(c) (d)

Figure 14.7 A transistor inverter: (a) circuit; (b) truth table; (c) logic
symbol; (d) BS logic symbol

(a) (b)
Note that the logic symbols for NAND/NOR gates are

similar to those of the AND/OR gates with the addition of a
small circle on the output. The circle denotes an inversion
operation.

AA

B
Z

B

AA

B
Z

B

A Z
1ZA

A

(b)

A B Z

0
0
1
1

0
1
0
1

0
1
1
0

(a)

Z

Z

B

A

A.B

B.A

A

B
Z= 1

A

B

A

B

(c) (d)

Figure 14.8 An Exclusive OR (XOR) gate: (a) circuit; (b) truth table; (c) logic symbol; (d) BS logic symbol

//integras/b&h/Eer/Final_06-09-02/eerc014

14/6 Digital control systems

Figure 14.11 Speed definitions: (a) propagation delay (tpd); (b) rise and fall times (tr and tf)

Power consumption is related to speed, as increased speed
is obtained by reducing RC time constants formed by stray
capacitance, and by using non saturating transistors. CMOS,
for example, has a power consumption of about 0.01 mW per
gate compared with ECL's figure of 60 mW/gate.

14.2.3 Fan in/fan out

The output of a logic gate can only drive a certain load and
remain within specification for speed and voltage levels.
There is therefore a maximum number of gate inputs a given
gate output can drive. A simple gate input is called a standard
load, and is said to have a fan in of one. A gate output's drive
capability is called its fan out, and is defined in unit loads.
A TTL gate output, for example, can drive ten standard gate
inputs and correspondingly has a fan out of ten.
Some inputs appear as a greater load than a standard

gate. These are defined as a fan in of an equivalent number
of standard gate inputs. An input with a fan in of three,
for example, looks like three gate inputs. Obviously the
sum of all the fan in loads connected to a gate output must
not exceed the gate's fan out.

14.2.4 Noise immunity

Electrical interference may cause 1 signals to appear as 0
signals and vice versa. The ability of a gate to reject noise
is called its noise immunity. Defining noise immunity is more
complex than it might at first appear, but the method
usually adopted is that shown on Figure 14.12(a). The volt-
ages given are those for a TTL gate which has a nominal 1 V
of 4.5 V and a nominal 0 Vof 0 V.

(V
V
V

V

Next we define how far an output 1 can fall to (2.4 V) and
a 0 rise to (0.4 V). These are respectively termed VOH and
OL. Finally we define how low a gate's input 1 can fall and

an input 0 rise without allowing its output to go between
OH and VOL. These voltages are called VIH (2.0 V) and
IL(0.8 V). The noise immunity is then the smaller of
OH �VIH) or (VIL �VOL). For TTL the figure is 0.4 V.

This is a worse case value, a more typical noise immunity
is about 1.2 V.
A figure sometimes quoted is the AC noise margin. This

is defined as the largest pulse that will not propagate down
a chain of gates similar to Figure 14.12(b). This gives a
more favourable result than Figure 14.12(a), but is a more
realistic test.

14.2.5 Transistor transistor logic (TTL)

TTL is NAND based logic, with the circuit of a 2 input
NAND gate being shown on Figure 14.13. The rather odd
looking dual emitter transistor can be considered as two
transistors in parallel or three diodes as shown.

R
If both inputs are high, Q2 is turned on by current from
1 supplying base current to Q3. The output is therefore

nominally 0 V. With either input low, Q1 is turned on, Q2
turned off and Q4 pulls the output high to a nominal 4.5 V.
The output transistors Q3, Q4 are called a totem pole

output and play a significant part in increasing the operating
speed. When the output is a 0, Q3 acts as a saturated
transistor. When the output is a 1, Q4 acts as an emitter
follower. Both states have low output impedances which
reduce RC time constants from stray capacitance.
There are at least six versions of TTL with differing speeds

and power consumption. Schottky versions (with S as part of
the suffix) use Schottky diodes within the gate to reduce hole

//integras/b&h/Eer/Final_06-09-02/eerc014

Logic families 14/7

Figure 14.12 Definitions of noise immunity: (a) D.c. noise margin. The voltages shown are for standard TTL; (b) A.c. noise immunity. The test sees
what is the smallest pulse amplitude that will propagate through the chain

Figure 14.13 Transistor transistor logic (TTL) circuit diagram the multi-emitter transistor can be considered to act as two transistors in parallel or
three diodes

storage delays. All TTL are members of the so called 74
series (originally conceived by Texas Instruments) and have
the same pin arrangements on the ICs. They can also be
intermixed although care must be taken because of the differ-
ent input loadings and output capability (an LS gate input,
for example, looks like half a normal gate input). All run on
a 5 V supply and use nominal logic levels of 4.5 V and 0 V.

14.2.6 Complementary metal oxide semiconductor
(CMOS) logic

CMOS is virtually the ideal logic family. It can operate on
a wide range of power supplies (from 3 to 15 V), uses little
power (approximately 0.01 mW at low speeds), has high
noise immunity (about 4 V on a 12 V supply) and very
large fan out (typically in excess of 50). It is not as fast as

TTL or ECL but its maximum operating speed of 5 MHz is
adequate for most industrial purposes. (Too high a maxi-
mum speed can actually be a disadvantage as it makes a
system more noise prone.)
CMOS is built around the two types of field effect tran-

sistors shown on Figure 14.14. From a logic point of view
these can be considered as a voltage operated switch. These
switches can be used to manufacture logic gates.
Figure 14.15(a) shows how an inverter can be implemen-

ted. With A low, Q1 is turned on and Q2 off. With A high Q2
is turned on and Z is low.

Q

Similarly a NAND gate can be constructed as Figure
14.15(b). If A or B is low, Z will be high because one of the
parallel pair Q1, Q2 will be on, and one of the series pair Q3,
4 will be off. The output Z will be low only when both A

and B are high when Q1, Q2 are both off and Q3, Q4 are
both on.

//integras/b&h/Eer/Final_06-09-02/eerc014

14/8 Digital control systems

Figure 14.14 Metal oxide semiconductor (MOS) transistors:
(a) n channel; (b) p channel

Q

Figure 14.15(c) shows a CMOS NOR gate. If A or B is
high, one of Q3 or Q4 will be on taking the output Z low
(with one of Q1, Q2 off). When both A and B are low, Q1,
2 will both be on and Q3, Q4 off taking the output high.
The high input impedance of FETs can present handling

problems, and early devices could be irreparably damaged
by static electricity from, say, nylon clothing or leakage cur-
rents from unearthed soldering irons. Modern CMOS now
includes protection diodes and can be treated like any other
component.
Another effect of the high input impedance is the

tendency for unused inputs to charge to an unpredictable
voltage. All CMOS inputs must go somewhere; even unused
inputs on unused gates on multigate packages must go to a
supply rail thereby forcing a 1 or 0 state.
CMOS is generally sold in the so called 4000 series which

is a rationalisation of the original RCA COSMOS
and Motorola McMOS ranges. `B' suffix CMOS denotes
buffered signals and improved protection; needless to say
the B devices are better suited for industrial systems.

14.2.7 Emitter coupled logic (ECL)

ECL is the fastest commercially available logic family, and
with care it can operate at 500 MHz. At these speeds,

Figure 14.15 Complementary metal oxide semiconductor (CMOS) logic gates: (a) NAND gate; (b) NOR gate

//integras/b&h/Eer/Final_06-09-02/eerc014

Logic families 14/9

however, extreme care needs to be taken with the circuit
board layout to avoid crosstalk and power supply induced
noise. ECL obtains its speed from the use of non saturating
transistors and high power levels (around 60 mW per gate
compared with CMOS figure of 0.01 mW). The logic levels
in ECL are �0.8 V and �1.6 V (giving a rather poor noise
immunity of 0.25 V). ECL is very fast, but its odd voltage
levels, strict wiring and power supply requirements and
poor noise immunity preclude its use in industrial applica-
tions except where very high speed is needed.

14.2.8 Open collector and tri-state outputs

The TTL NAND gate of Figure 14.16(a) has a single output
transistor rather than the usual totem pole output. The
output is connected to Vcc by an external pull up resistor.
This is known as an open collector output. In Figure
14.16(b) the outputs of several open collector gates are con-
nected in parallel with a single pull-up resistor. A half circle
on the gate output symbol is often, but by no means univer-
sally, used to show an open collector output. The output Z
will be high if, and only if, all the parallel gates have high
outputs. Using positive logic conventions the paralleled
outputs provide a positive AND function on the outputs
of the input gates.
Another description of the operation is the output Z will be

low if any of the outputs are low. This will occur if (A and B
are high) OR (C and D are high) OR (E and F) are high. The
linking of collectors can be considered to perform a negative
OR function on the outputs of the input gates and can give a
possibly complex function for the cost of a single pull up resis-
tor. Its main disadvantage is a poor rising edge (caused by the
RC time constant of the pull up resistor and stray capacitance)
and a slight degradation of noise immunity.

Open collector gates are a possible solution for applica-
tions where many devices communicate via a bus system, the
backplane of a computer is a typical application. A more
common approach for bus systems though is the tri-state
gate. Strictly speaking tri-state is a registered trade mark of
National Semiconductors. The term tri-state is a bit of a mis-
nomer as the gate does not have three logic levels but rather
three logic states: high, low and disconnected. A tri-state
gate has normal inputs plus a separate control input which
enables the gate or puts the output into a high impedance
(disconnected) state. Figure 14.17(a) shows the symbol for a
tri-state two input NAND gate and Figure 14.17(b) shows
three tri-state buffers which are used to route data from A, B
or C to output Z as selected by control inputs L, M or N. It
should be noted that this is fundamentally different from the
wire AND open collector circuit of Figure 14.16.

14.2.9 Schmitt triggers

Many logic elements require fast edges to operate correctly.
Edges can be degraded for a variety of reasons; stray capa-
citance or a non digital device for example. The Schmitt
trigger always gives fast edges on its output signals regard-
less of the edge speed of the input signals.
The transfer function of a conventional gate is shown on

Figure 14.18(a). The transfer function of a Schmitt trigger
incorporates hysteresis and is shown on Figure 14.18(b).
Figure 14.18(d) shows a slow changing input and the result-
ing output, which always has fast clean edges.
A Schmitt trigger has the conventional logic symbol with

an added hysteresis loop similar to Figure 14.18(c). Schmitt
triggers are usually available in hex inverter or quad two
input gate ICs. The 74123, for example, is a popular quad
two input Schmitt trigger NAND gate.

Figure 14.16 An open collector TTL NAND gate: (a) circuit diagram; (b) logic function using open collector gates. The linking of the collectors gives
a positive AND or negative OR function depending on the interpretation of the logic states

Figure 14.17 Tri-state gates: (a) tri-state NAND; (b) tri-state data selection

//integras/b&h/Eer/Final_06-09-02/eerc014

14/10 Digital control systems

Figure 14.18 The Schmitt trigger: (a) operation of a conventional inverter; (b) operation of an inverter with hysteresis; (c) logic symbol; (d) use of a
Schmitt trigger to convert a slowly changing signal to a crisp digital signal

Comparison of Figures 14.18(a) and 14.18(b) shows that
a Schmitt trigger has better noise immunity than a con-
ventional gate. They are therefore commonly used for
interfacing to slow and possibly noisy signals from the
outside world.

14.2.10 Choosing a logic family

Until the latter part of the 1980s the designer really had to
choose between TTL (with the low powered Shottky (LS)
family being the popular choice) and CMOS. The latter
was slower and had a much smaller range of devices, but
had the advantages of very low power consumption, better
noise immunity and a wide supply tolerance. Since then,
though, there has been a tendency for the families to merge.
The trend started with the 74C series of CMOS which pro-

vided CMOS devices with the same pinning as TTL, but with
CMOS B series electrical characteristics (slower than TTL,
but with 3 to 15 V supply). These were useful, but the major
impact was the introduction of the 74HC, 74AC, 74HCT and
74HCT families. These use improved technologies, were as

fast as TTL, and (as their name implies) they follow the
74 series pinning. Taking them in turn:
74AC is the high speed member of the family, capable of

operating at speeds of 125 MHz. The voltage supply range
is 3 to 6 V (essentially TTL with a wider tolerance), and the
transfer characteristic is the standard CMOS near ideal
symmetrical curve of Figure 14.19(a).
74HC is a near replacement for LS TTL with an oper-

ating speed of 30 MHz. Other characteristics are similar to
74AC.
As mentioned earlier, the output levels of TTL, shown on

Figure 14.19(b), are approximately 0.5 V in the 0 state, and
4.5 V in the 1 state. Standard forms of TTL can, just,
connect to 74AC or 74HC devices, but the resultant noise
immunity is poor. Two further forms of CMOS were devel-
oped with a transfer function whose input side mimicked
a TTL device. These are known as 74ACT (high speed
version) and 74HCT (practically a direct replacement for
LS TTL). These should NOT be viewed as a family to be
used for a complete project, as to do so would give the
poorer TTL noise immunity. They are, though, exceedingly
useful when a circuit has to mix TTL and CMOS devices.

Figure 14.19 Transfer functions for CMOS and TTL: (a) CMOS; (b) TTL and CMOS ACT/HCT

//integras/b&h/Eer/Final_06-09-02/eerc014

Combinational logic 14/11

In CMOS, therefore, there is now:

Family Supply Speed (MHz) Comments

4000B 3 to 15 V 2	 Useful for battery circuits,
slow, seems unlikely to
develop further

74C 3 to 15 V 2	 As 4000B with TTL
pinning

74AC 2 to 6 V 125	 Very fast. TTL pinning.
Power rises with speed so
normal CLOS low power
may not be relevant. Care
needed with layout

74HC 2 to 6 V 30	 Designed as direct
replacement for LS TTL
(but with CMOS signal
levels)

74ACT 2 to 6 V 125	 As 74AC with TTL input
levels

74HCT 2 to 6 V 30	 As 74HC with TTL input
levels

An interesting development is the view that the corner
supply pins on TTL are not the best arrangement for
power supply and ground noise, and there seems to be a
move toward centre pinning on some high speed CMOS
circuits.
There are four TTL families in common current use; LS,

ALS, F and AS. It is worth listing these in tabular form:

Family Speed (MHz)

74LS 25
74ALS 35
74F 100
74AS 105

All require a 5 V �/�0.25 V supply. The suffix in the
above table appears as part of the device identification; a
74LS06, for example, is a low power Schottky gate.
Choosing a device is quite straightforward. First where

there is little choice; for out and out speed use ECL (but
remember the precautions needed to avoid noise). For high
speed, use 74AC (but again take care with the layout).
Battery circuits are best designed with 4000B or 74C

devices, the supply is less critical, and both will run on a
9 V battery until it is flat without the need of a regulator
circuit. Being slower they are also less prone to noise.
For `cooking' logic, 74HC seems best suited with a

reasonable speed, lower power and better noise immunity
than LS TTL. The only problem is an incomplete coverage
of the TTL family at present (the useful 7490/92 counters
are missing for example), so the odd LS or ALS TTL circuit
may be needed, with 74HCT devices being used as
interfaces between TTL and CMOS.
Figure 14.20 shows a comparison between these families.

14.3 Combinational logic

14.3.1 Introduction

Combinational logic is based around the block diagram of
Figure 14.21(a). Such systems have several inputs and one, or
more, outputs. The output states are uniquely defined for each
and every combination of inputs and the ̀ block' does not con-
tain any device such as storage, timers or counters. We there-
fore have n inputs I1 to In and Z outputs Q1 to Qz. In systems
with multiple outputs it is usually easier to consider each sep-
arately as Figure 14.21(b), allowing us to consider the circuit as
Z blocks, each different but represented by Figure 14.21(c).
The number of possible input states depends on the

number of inputs:

For two inputs there are four input combinations
For three inputs there are eight input combinations
For four inputs there are sixteen input combinations

Figure 14.20 Comparison of logic families operating at about 1 MHz

//integras/b&h/Eer/Final_06-09-02/eerc014

14/12 Digital control systems

Figure 14.21 Combinational logic block diagrams: (a) the generalised problem with n inputs and Z outputs; (b) problem split into Z independent
circuits; (c) one of the Z circuits with a single output

and so on. Not all of these may be needed. There are
frequently only a certain number of input combinations
that may occur because of physical restrictions elsewhere
in the system.
The design of combinational logic systems first involves

examining all the input states that can occur and defining
the output states that must occur for each and every input
state. A logic design to achieve this is then constructed from
the gates described in Section 14.1.3. In many systems the
design can be done in an intuitive manner, but the rest of
this section describes more formal design procedures.
Few real life systems need pure combinational logic, most

need storage and similar dynamic functions. Such systems
can be analysed and designed considering them as smaller
subsystems linked together. The design of dynamic systems It can be seen that Z is 1 for:
is discussed in Section 14.8.

�A and B and C
�

14.3.2 Truth tables or A and B and C
�

A truth table is a useful way of representing a combina-
tional logic circuit, and can be used to design the circuit
needed to achieve a desired function.
Suppose we have three contacts monitoring some event

(overpressure in a chemical reactor for example) and we
wish to construct a majority vote circuit. If the three
switches are called A, B, C and the majority vote Z this
would have the truth table:

or A and B and C
or A and B and C

The desired logic function can then be constructed
directly from the truth table as Figure 14.22. In general, the
circuit derives from a truth table will consist as a set of
AND gates whose outputs are OR'd together. This form of
circuit is known as a Sum of Products (see Section 14.4.3),

Figure 14.22 Non minimal implementation of majority vote logic direct from the truth table

//integras/b&h/Eer/Final_06-09-02/eerc014

Combinational logic 14/13

Figure 14.23 Sum of products (AND/OR) logic implementation based solely on NAND gates: (a) required function; (b) NAND based circuit;
(c) representation of a NAND gate; (d) circuit b redrawn in the style of representation c. The inverters cancel giving the required function

and one of the reasons for the popularity of NAND gates is
that an s of p expression can be formed purely with NAND
gates.
A truth table design always gives a design which works

and is logically correct, but does not always give a circuit
which uses the minimum combination of gates. To do this
we need one of the other techniques described below.
Consider the expression

Z �((A & B) OR (C & D)

This has the simple circuit of Figure 14.23(a), which
obviously fulfils the logic function. Consider, however,
the totally NAND based circuit of Figure 14.23(b).
Straightforward, if laborious, testing of all possible sixteen
input states will show that it behaves identically to Figure
14.23(a). In some mysterious way, the right-hand NAND
gate is behaving as an OR gate.
This rather surprising fact is a result of De Morgan's

theorem, described in the next section. Intuitively, however,
we can see the reason by drawing up the truth table for the
OR gate preceded by inverters as Figure 14.23(c):

This is the same as a NAND gate, so a NAND gate can,
with legitimacy, be drawn as Figure 14.23(c).
The circuit of Figure 14.23(b) could now be drawn as

Figure 14.23(d) with the ingoing NANDs drawn as ANDs
followed by an inverter, and the outgoing NAND by the
arrangement of Figure 14.23(c). Obviously the intermediate
inverters cancel, leaving the equivalent circuit of Figure
14.23(a).

14.3.3 Boolean algebra

In the nineteenth century a Cambridge mathematician and
clergyman George Boole, devised an algebra to express and
manipulate logical expressions. His algebra can be used to
represent, design and minimise combinational logic circuits.

The AND function is represented by a dot (.), so

Z �(A.B

means Z is 1 when A is 1 AND B is 1. Often the dot is
omitted (e.g. Z �(AB)
The OR function is represented by an addition sign (�), so

Z �(A �B

means Z is 1 when A is 1 OR B is 1.
The invert function is represented by a bar ±, so

Z �(�A

means Z takes the opposite state to A. Some sources use the
�0(to denote inversion so A and A0(both mean the inverse of A.

Boolean algebra allows complex expressions to be written
in a concise manner and can also be used to simplify expres-
sions. To achieve this, a series of rules are used. The first
eleven of these are self obvious (or can be visualised by
considering the equivalent relay circuits).

(a) A.1 �(A
(b) A.0 �(0
(c) A � 1 �(1
(d) A � 0 �(A
(e) A.A �(A (e and f are known as the Idempotent laws)
(f) A �A �(A
(g) A���(A (known as the Involution law)

�(h) A.A �(0 (h and i are known as the Complementary laws)
(i) A �(�A �(1
(j) A �B �(B �A (j and k are known as the Commutative laws)
(k) A.B �(B.A

The next two laws, called the Associative laws, allow us to
group brackets around variables with the same operator

(l) (A �B) �C �(A � (B �C) �(A �B �C
(m) (A.B).C �(A.(B.C) �(A.B.C

The next two laws are called the Absorption laws, and
tell us what happens if the same variable appears with AND
and OR operators

(n) A �A.B �(A
(o) A.(A �B) �(A

The next laws, called the Distributive laws, tell us how to
factorise Boolean equations

(p) A �B.C �((A �B).(A �C)
(q) A.(B �C) �(A.B �A.C

//integras/b&h/Eer/Final_06-09-02/eerc014

14/14 Digital control systems

In general, Boolean expressions can be expressed in two
forms. The first form, called product of sums, or P of S,
brackets OR terms and ANDs the results for example:

� � �Z ��A �B�:�B �C �D�:�A �D�(
The second form, called sum of products, or S of P,

groups AND terms and ORs the results, for example:
�Z ��A.B. �D�� �B�.C�� �A.D �(

Truth tables, described in Section 14.4.2, inherently give
an S of P result.
The complementary function of a Boolean expression

yields the inverse of the expression (i.e. where the expression
yields 1, the complement yields 0). The expressions (A �B)
and (� �A.B) for example, can be shown to be complementary
by simply constructing their truth tables.
The last two laws, known as De Morgan's theorem, show

how to form the complement of a given expression (and
gives one way to interchange S of P and P of S forms).

�(r) �A � B� � (A�:B

�(s) �A:B� � (�A � B

In its formal representation, De Morgan's theorem appears
rather daunting. It can be more easily expressed:
To form the complement of an expression

(1) Replace each `�' in the original expression with `.' and
vice versa.

(2) Complement each term in the original expression.
�For example, to complement the expression A �B.C:

Step 1, replace `�' by `.' and `.' by `�' giving:
�A.�B �C�(
Step 2, complement each term
� �A.�B �C�(
which is the result.
Boolean Algebra can be used to minimise logical expres-

sions, but the method is rarely obvious, and it is easy to
make errors with double bars and swapping of `.'s and
`�'s. Minimisation by Boolean algebra makes good examin-
ation questions, but is rarely used in practice. An easier way
to achieve minimisation is to use the graphical Karnaugh
map, described below.

14.3.4 Karnaugh maps

A Karnaugh map is an alternative way of presenting a truth
table. The map is drawn in two dimensions; two, three and
four variable maps are shown on Figure 14.24.

Each square within the map represents one line on the
truth table. For example:

�square X represents A � 1, B � 0 which can be written A.B
square Y represents A � 0, B � 1, C � 1 which can be
written A.B.C�

square Z represents A � 1, B � 0, C � 1, D � 0 which can be
written A.B.C.D� �

The essential feature of a Karnaugh map is the way in
which the axes are labelled. It will be seen that only one
variable changes for a move between any adjacent horizon-
tal or vertical squares
The use of this feature is not immediately apparent, but

consider Figure 14.25. This contains four terms giving a 1
output. These are:

�A.B.C.D, A.B.C. �� � D, A.B.C.D, A.B.C.D

so we could write (quite correctly)

D �A.B.C. �Z �A.B�.C. � D �A.B�.C.D �A.B.C.D

Examination of the map, however, shows that the D vari-
able and B variable can change state without affecting the
output. The circled squares, in fact, represent AC, so the
above expression can be simplified to

Z �AC

Groups of two adjacent cells on a three variable map
represent some combination of TWO of the three variables.
On Figure 14.26(a), groupings for A.B and C.B are shown. �

This map represents

Z �A�.B �C.B�

Two adjacent cells on a four variable map represent some
combination of three of the four variables. On Figure

� � � � � �14.26(b), groupings for A.B.C, B.C�.D, A.B.D and B.C.D
are shown. This map thus represents

� � � �Z �A�.B.C �B.C�.D �A.B�.D �B.C.D

�B.C.D �A.B.C. �Figure 14.25 Minimisation of Z �A. � � D �A.B.C.D
�A.B.C.D to Z �A.C using a Karnaugh map

Figure 14.24 Karnaugh maps: (a) two variable; (b) three variable; (c) four variable

//integras/b&h/Eer/Final_06-09-02/eerc014

Combinational logic 14/15

Figure 14.26 Grouping of two adjacent cells: (a) on a three variable map; (b) on a four variable map

Groups of four adjacent cells on a three variable map (1) Plot the Boolean expression or truth table onto the
represent a single variable. The group on Figure 14.27(a) Karnaugh map
represents the variable A, hence (2) Form new groups of 1s on the map. Groups must be

rectangular and contain 1, 2, 4 or 8 cells. Groups should
Z �(A

Groups of four adjacent cells on a four variable map
represent some combination of two of the four variables.
The groups on Figure 14.27(b) represent B ��D and BD. The
map represents

�Z �(B�.D �B.D

A group of eight adjacent cells on a four variable map
represent a single variable. The group on Figure 14.28 repre-
sents C and B, so �

�Z �(C �B

It is important to realise that top and bottom edges are
considered adjacent as are right and left sides. Grouping
can therefore be made around the tops and sides as Figure
14.29 which represents

Z �(�A.C �AC�

The rules for minimisation using Karnaugh maps are
simple and straightforward: Figure 14.28 Grouping of eight adjacent cells

Figure 14.27 Grouping of four adjacent cells: (a) on a three variable map; (b) on a four variable map

//integras/b&h/Eer/Final_06-09-02/eerc014

14/16 Digital control systems

Figure 14.29 Top and bottom sides are adjacent

be as large as possible and there should be as few groups
as possible. Do not forget overlaps and possible round
the edge groupings.

(3) From the map, read off the expression for each group.
The minimal expression is then obtained in S of P form,
and can be directly implemented in AND/OR gates or
NAND gates

Figure 14.30(a) shows a majority vote circuit (2 out of 3)
plotted onto a Karnaugh map and grouped as Figure
14.30(b). It will be seen that this has three terms giving the
simple NAND based circuit of Figure 14.30(c).

14.3.5 Conversion between P of S and S of P
representations

It is occasionally required to translate an S of P expression
into a P of S expression and vice versa
These are most conveniently handled in the form

Z �(��N1;N2;N3 . . . �(for S of P

and

Z �(��N1;N2;N3 . . . �(for P of S

where Nn is the numerical equivalent of the binary pattern
at the corresponding gate input. If, for example, a gate
input is C, B, A, N will be 6 corresponding to 110. �

The first step is to note the largest number, which deter-
mines how many bits we are dealing with (three bits for
seven or less, four bits for fifteen or less and so on.) Call
the maximum number corresponding to this number of
bits Nmax (seven, fifteen, thirty-one etc.).

(N

Note the unused numbers in the expression to be con-
verted. For each unused number Nun there will be a number

max ± Nun) in the expression in the other form. For
example, to convert the S of P expression

Z �(��1; 4; 5; 6�(
to P of S form we first note Nmax is seven (three bits). The
terms in the P of S representation will be given by

Unused S of P 0 2 3 7 Nun
P of S 7 5 4 0 (Nmax �Nun)

Giving a P of S representation of
Z �(� (0, 4, 5, 7) which is the equivalent to the original S

of P expression.
The method for reverse conversion is identical.

14.3.6 Formal minimisation, the Quine-McCluskey
method

The Karnaugh map is an excellent way of minimising com-
binational logic, but is essentially limited to five inputs and
relies on human intuition. More formal methods are needed
for more complex functions. The most common of these is
Quine-McCluskey. The method can deal with any number
of inputs, but is lengthy and error prone for direct human
implementation. It is, however, ideally suited for computer
implementation.
The start point is an S of P expression in the form

Z �(� (N1;& N2;& N3. . .�(

Figure 14.30 The majority vote circuit: (a) plotted onto Karnaugh map with grouping; (b) AND/OR implementation; (c) equivalent NAND based
implementation

//integras/b&h/Eer/Final_06-09-02/eerc014

Combinational logic 14/17

From this the minterms are grouped according to
whether they have one, two, three etc. 1s in them. For
example, with

Z �(� �2;& 3;& 4;& 5;& 6;& 7;& 9;& 11;& 12;& 13�(
we would group them
Minterms with one 1

0010 (2)

0100 (4)

Minterms with two 1s

0011 (3)

0101 (5)

0110 (6)

1001 (9)

1100 (12)

Minterms with three 1s

0111 (7)

1011 (11)

1101 (13)

Each term in each group is compared with each term in
the group immediately below. If one and only one digit dif-
ference is found, a new entry in the lower group is formed
with X replacing the single differing digit. Comparing 0010
with 0011 gives a new entry of 001X in the lower table. For
the above groups this gives:

The letters a, b, c etc. show the comparisons made and the
groups created. Any group which does not create a new
group is called a prime implicant, denoted by # above. These
are X011, 10X1, 1X01, 0X1X, 01XX, X10X (representing
DCBA, A being the least significant as usual) with X denot-

�ing don't care. X011 is thus C.B.A. An S of P circuit based
on these prime implicants will work, but is not necessarily
minimal.
Next a chart is drawn of these prime implicants, as shown

on Figure 14.31 where each prime implicant is represented
by a t. For four bit numbers, each minterm with full four
bits will have one t, with one X there will be two ts and
with two crosses four ts. X011, for example, represents
minterms 3 and 11. The first stage is to identify columns
with only a single t. The corresponding prime implicants
MUST be in the final expression. These are noted down
and all the corresponding ts marked for each row as these
are now covered.
For each column, if there is a marked t in the column, all

ts in the column can now be marked, as this minterm has
been included. If a prime implicant has all its ts marked it
is redundant and can be deleted (e.g. 01XX).
There will probably be one or more ts left unmarked.

Choose from the remaining prime implicants to give the
best grouping. Give preference to minterms with the largest
number of Xs, and remember that once a single t is marked
in a column, all the ts in the column can be marked. When
all ts have been marked a solution has been reached.
Following this procedure for Figure 14.31 gives:

�CD �B �Z �(A � D �BC

a result which could, in all honesty, have been arrived at
much faster with a Karnaugh map and common sense. The
procedure is, however the basis of computer minimisation
of logic circuits as used in PLA and PAL configuration
programs.

14.3.7 Hazards, races and glitches

Gate propagation delays discussed in Section 14.2.2 can
cause unwanted random pulses to appear in logic circuits.
These unwanted pulses are known variously as hazards,
races or glitches.
The logical output of Figure 14.32(a) should always be

zero since
�Z �(A.A �(0

�In practice, however, A will be delayed by the propaga-
tion delay of an inverter giving the possible waveforms of
Figure 14.32(b). As A changes a small pulse may appear at
the output.
Glitches are not always immediately obvious. A similar

problem can occur with the NAND based AND/OR circuit
of Figure 14.33(a). This implements the relationship

Z �(A.B �(�A.C
�As before A must be obtained from some form of inverter

as Figure 14.33(b). The circuit is logically correct but if
B �(C �(1 then the circuit is behaving in a similar way to
Figure 14.32(a). If B and C are both 1 and A changes state
a small pulse will probably appear at the output.
Plotting Figure 14.33 onto a Karnaugh map as Figure

14.34(a) shows a way to identify and eliminate glitches. There
�are two groups on the map; AB and AC. Moving between

AB �(11 and AB �(01 we move between groups. This corre-
sponds to A changing from 1 to 0 or 0 to 1. A potential glitch
has adjacent 1s not covered by the same group.

//integras/b&h/Eer/Final_06-09-02/eerc014

14/18 Digital control systems

Figure 14.31 Prime implicant chart after essential implicants and subsequent minterms have been marked

Figure 14.32 An obvious glitch producing circuit: (a) logic diagram, the output should always be `0'; (b) actual circuit behaviour

Figure 14.33 Non obvious glitch producing circuit: (a) logic diagram; (b) redrawn to show source of the glitch

To remove the risk of a glitch we add an additional group
as Figure 14.34(b). There are now no adjacent 1s not in the
same group. The resulting circuit is shown on Figure 14.34(c).
Note that the group BC is logically redundant and is
included solely to prevent glitches when A changes state
with B �(C �(1. Glitch free circuits are often non minimal.
Glitches may not always be important. In general, if the

output of a glitch prone circuit is not feeding directly (or
indirectly) a counter, storage device or timer the glitches
will probably have no effect. Glitches can also be ignored
by using clocked synchronous systems. Different logic
families have different propensities for generating and
ignoring) glitches. The important factor is the relationship
between edge speeds and propagation delays. CMOS, with
edge speed similar to or longer than the propagation delay,
has a useful tendency to ignore glitches. ECL, with very fast
edge speeds, is very prone to glitches.

14.3.8 Integrated circuits

Many complex functions are available in IC form, and a
circuit designer should aim to minimise cost and the number
of IC packages rather than the number of gates. A minimi-
sation exercise, whether by Boolean algebra or Karnaugh
map, should always be preceded by a search of an IC
catalogue for a suitable off the peg device.

14.3.9 UCLAs, PALs and PLAs

An integrated circuit consists of a small slice of silicon into
which is etched the various individual unconnected com-
ponents required to make the required circuit. These are
then connected by a thin metallised layer to form the
required device function. An UCLA (for uncommitted logic
array, also known as an ULA) consists initially of a large

//integras/b&h/Eer/Final_06-09-02/eerc014

Storage 14/19

Figure 14.34 Glitch free design using a Karnaugh map: (a) original minimal grouping; (b) BC term added to remove the glitch. The final grouping is
non minimal; (c) the resulting glitch free, but non minimal, logic

number of assorted gates, storage and memories but with-
out the metallised interconnection layer. The user specifies
the required circuit which is then formed by the design of
the metallised layer. The basic IC silicon slice (which is the
expensive part) is thus common to many users and the relat-
ively cheap metallisation layer is specific to one user's appli-
cation. UCLAs therefore allow designers to have their own
ICs at a reasonable price. They are, though, only cost effec-
tive for reasonable volume production runs.
An alternative approach, suitable for smaller volumes, is

programmable logic. These are essentially a combination of
true/complement inputs with an AND/OR output as shown
on Figure 14.35. Each connection point is originally linked,
but can be blown open by the designer (using a program-
ming terminal) to leave the desired function. The original
devices were based on bipolar construction, and literally
used small metallic fuses. Once blown, they could not be
re-used. Later MOS devices can be erased by UV light in a
similar way to EEPROMs.
The simplest devices use a programmable AND combina-

tion (selected from the true/complement inputs) with a fixed
AND/OR logic. These are known as Programmable Array
Logic, or PALs. The more versatile (but more complex)
arrangement of Figure 14.36 uses programmable AND
plus programmable OR connections. These are known as
Programmable Logic Arrays or PLAs, (this distinction is
not quite true, the terms PLA and PAL are used inter-
changeably by some manufacturers).
Figures 14.35 and 14.36 are essentially combinational

logic in sum of product (S of P) form (see Section 14.3.2).
Sequential programmable logic is also available, and is
typically of the form of the Figure 14.37 based around an
AND/OR/D-type circuit. These are known as registered
or sequential PALs. They are very useful for building logic
networks built around state transition diagrams (see Section
14.8)
There are some disadvantages. Early devices had a vora-

cious power appetite, several hundred mA for some. The
later MOS devices are better, but their use should be ques-
tioned on battery driven devices. There is also a one-off

investment needed in a programming terminal, and pro-
gramming languages such as ABEL, CUPL and PALASM.
These work out the required link blowing from a designer
specified logic function defined in combinational or state
transition form. They do not, however, check out for glitches
and even seem to encourage them by aiming for truly
minimal logic. Some care is needed by the designer, but the
languages do allow redundant combinations to be specified
to give glitch free circuits.
With bipolar devices, it should also be remembered that

bipolar devices cannot be reprogrammed if an error is
made. Mistakes with bipolar programmable logic are not
cheap, and even with MOS versions, erasure with UV light
is not instantaneous.
Programmable logic is very popular where standard

boards (with fixed connections to the outside world) can be
used in different applications. Typical examples are vending
and ticket machines, interface devices or testing of a logic
circuit before building the final version.

14.4 Storage

14.4.1 Introduction

Most logic systems require some form of memory. A typical
relay circuit is the motor starter circuit of Figure 14.38
which `remembers' which of the two operator push buttons
was pressed last. The memory is achieved by the latching
contact A1.

14.4.2 Cross coupled flip flops

The logical equivalent of Figure 14.38 is the cross coupled
NOR gate circuit of Figure 14.39(a). Assume both inputs
are 0, and output Q is at a 1 state. The output of gate a
will be 0, and the two 0 inputs to gate b will maintain Q in
its 1 state. The circuit is therefore stable. If the reset input is

�now taken to a 1, Q will go to a 0. and Q to a 1. Similar

//integras/b&h/Eer/Final_06-09-02/eerc014

14/20 Digital control systems

Figure 14.35 The basis of programmable logic

Figure 14.36 A programmable logic array with AND/OR inputs both programmable

//integras/b&h/Eer/Final_06-09-02/eerc014

Storage 14/21

Figure 14.37 Sequential programmable logic with tri-state outputs. A typical device would have eight inputs and eight D type flip flops

Figure 14.38 A simple relay storage circuit used to start a motor. The
circuit remembers which button (Start or Stop) was last pressed

analysis to that above will show that the circuit is stable in
this state, even when the reset input goes back to a 0.
The set input can be used now to switch the Q output to 1

�and the Q back to a 0. The set and reset inputs cause the
output to change state, with the outputs indicating which
input was last at a 1 state as summarised by Figure 14.39(b).
If both inputs are 1 together, both outputs go to a 0, but this
condition is normally disallowed.

The cross coupled NOR gate circuit is called an RS Flip
Flop, and is shown on logic diagrams by the symbol of
Figure 14.39(c).
It is also possible to construct a cross coupled flip flop

from NAND gates as Figure 14.40(a). Analysis will show
that this behaves similar to Figure 14.39, but the circuit
remembers which input last went to a 0 as shown on
Figure 14.40(b). The logic symbol for a NAND based RS
flip flop is shown on Figure 14.40(c); the small circles on
the input showing that the flip flop responds to 0 inputs.

14.4.3 D type flip flop

The D type flip flop shown on Figure 14.41(a) has a single
�data input (D), a clock input and the usual Q and Q outputs.

Superficially this is similar to the latch memory above, but
the clock operates in a more subtle way. The operation of a
typical D type flip flop is shown on Figure 14.41(b). The
clock samples the D input when the clock input goes from a
0 to 1, but the output changes state when clock goes from 1 to
0. The significance of this is explained below in Section 14.4.6.
There are several ways in which a D type flip flop can

be implemented. A common circuit uses the master/slave
arrangement of Figure 14.41(c). When the clock input is 1,
the D input sets, or resets, the master flip flop. When the

Figure 14.39 A NOR based RS flip flop. This circuit remembers which input was last a `1': (a) logic diagram; (b) operation; (c) logic symbol

//integras/b&h/Eer/Final_06-09-02/eerc014

14/22 Digital control systems

Figure 14.40 A NAND based RS flip flop. This circuit remembers which input was last a `0': (a) logic diagram; (b) operation; (c) logic symbol

Figure 14.41 The D type flip flop: (a) logic symbol; (b) operation; (c) logic diagram for a master/slave D type

clock input is 0 the state of the master flip flop is transferred
to the slave flip flop (and the outputs take up the state of D
when the clock input was 1). Note that the master flip flop is
isolated from the D input whilst the clock is 0.
Although it would be feasible to construct a master/slave

flip flop from discrete gates, integrated circuit D types (such
as the TTL 7474 or the CMOS 4013) are readily available.

14.4.4 The JK flip flop

In Section 14.4.2 the NOR based RS flip flop was described,
and it was stated that the input state R �(S �(1 was normally
disallowed. The JK flip flop, shown on Figure 14.42(a) is a
clocked RS flip flop with additional logic to cover this pre-
viously disallowed state. The clock input acts as described

above for the D type flip flop, i.e. sampling the inputs on
one edge, and causing the outputs to change on the other.
The outputs after a clock pulse for J �(1, K �(0; J �(0,

K �(1; J �(0, K �(0 are as would be expected for a clocked
RS flip flop. If J �(K �(1, the outputs toggle; that is the

�states of the Q and Q interchange. This action is sum-
marised on Figure 14.42(b).
The toggle state is the basis for counters, described in

Section 14.7.

14.4.5 Clocked storage

The D type and JK flip flops described above are examples
of clocked storage. The advantages, and implications of this
are probably not immediately obvious.

Figure 14.42 The JK flip flop: (a) logic symbol; (b) operation

//integras/b&h/Eer/Final_06-09-02/eerc014

Timers and monostables 14/23

Figure 14.43 Clocked storage. Data moves one position for each pulse on the move line

In all bar the simplest systems, data is often required
to be moved around from one storage position to another.
In Figure 14.43, for example, data is to be moved through
stores A, B, C in an orderly manner. If simple flip flops were
used along with a signal enable as shown, the data would
shoot straight through all the stages. If clocked storage is
used, the data will sequence from A to B to C, moving one
position for each clock pulse.

14.5 Timers and monostables

Control systems often need some form of timer. Timing
functions in logic circuits are provided by devices called
monostables or delays. There are many types of delay,
although all can be considered as Figure 14.44(a), to consist

�of an input, Q and Q outputs and an RC network which
determines the delay period.

The commonest timer, often called the one shot or mono-
stable, gives an output pulse, of known duration, for an
input edge. The user can select which edge (0±>1 or 1±>0)
triggers the circuit. On Figure 14.44(b) a 0±>1 edge is used.
Monostables are the basis of all other delay circuits and
are widely available (74121, 74122 in TTL, 4047, 4098 in
CMOS). Pure delays are shown on Figure 14.44(c±e), and
these can be constructed by adding gates to monostable out-
puts. Figure 14.44(f/g) shows the circuit for a delay off.
A variation of the monostable is the retriggerable mono-

stable. In most monostables circuits the timing logic ignores
further input edges once started. In a retriggerable mono-
stable each edge sets the timing circuit back to the start
again. The action of a retriggerable and normal monostable
are compared on Figure 14.45.
The time delay of any timer is of the order of RC seconds

where R is the value of the timing resistor in ohms and C is
the value of the timing capacitor in farads. For delays of
more than a few seconds very large values of R and C are

Figure 14.44 Various forms of timers and monostables: (a) basic form of a timer. The timer duration is determined by the values of R and C and is
usually of the order of RC seconds; (b) one shot timer, often called a monostable; (c) delay on timer; (d) delay off timer; (e) delay on and off timer;
(f) delay off timer built using a simple monostable; (g) timing waveforms for circuit f

//integras/b&h/Eer/Final_06-09-02/eerc014

14/24 Digital control systems

Figure 14.45 A re-triggerable monostable. Each input 0 to 1 edge re-starts the timing function

Figure 14.46 Implementation of a long period timer

required. High value resistors are prone to changes in value
from leakage and large value capacitors must be electro-
lytics with problems from leakage, size and long term drift.
For periods of more than a few seconds it is usually better
to produce a time delay with an oscillator and counter as
Figure 14.46. The oscillator produces a free running pulse
chain which is normally blocked by gate 2. A start pulse
sets flip flop 3 and resets the counter. With flip flop 3 set,
pulses are passed to the counter which counts up. When
the counter reaches a pre-determined count it resets the
flip flop. The Q output of the flip flop thus goes high for a
time

T �(N �(P seconds

where N is the count preset and P the oscillator period.
Integrated circuits based on this principle, such as the
ZN1034, are available giving very long delays (up to days)
with reasonable value components and little problems from
drift.

14.6 Arithmetic circuits

14.6.1 Number systems, bases and binary

In previous sections, logic signals have been assumed to rep-
resent events such as printer ready, or low oil level. Digital
signals can also be used to represent, and manipulate numbers.
We are so used to the decimal number system that it is

hard to envisage any other way of counting. Normal every
day arithmetic is based on multiples of ten. For example,
the number 9156 means:

9 thousands �(9 �(10 �(10 �(10
plus 1 hundred �(1 �(10 �(10
plus 5 tens �(5 �(10
plus 6 units �(6

Each position in a decimal number represents a power of
ten. Our day to day calculations are done to a base of ten
because we have ten fingers. Counting can be done to any
base, but of special interest are bases 8 (called octal), 16
(called hex for hexadecimal) and two (called binary).
Octal uses only the digits 0±7, the octal number 317, for

example, means

Hex uses the letters A±F to represent decimal ten to
fifteen, so hex C52, for example, means

Binary needs only two symbols, 0 and 1. Each position in
a binary number represents a power of two and is called a
bit, for BInary digiT, most significant to the left as usual, so
101101 is evaluated:

//integras/b&h/Eer/Final_06-09-02/eerc014

Arithmetic circuits 14/25

Fractions can also be represented in binary, although this
is not commonly encountered. Taking fractions as powers
of two we get 1/2 (0.1 in binary), 1/4 (0.01 in binary), 1/8
(0.01) and so on. The binary number 110.101 is thus 6 plus
0.5 plus 0.125 giving 6.625.
Conversion from decimal to binary is achieved by succes-

sive division by two noting the remainders. Reading the
remainders from the top (LSB) to bottom (MSB) gives the
binary equivalent. For example, decimal 23

Decimal 23 is binary 10111.
Octal and hex give a simple way of representing binary

numbers. To convert a binary number to octal, the binary
number is written in groups of three (from the LSB) and the
octal equivalent written underneath, for example 11010110

grouped in threes 11 010 110
Octal 3 2 6

Hex conversion is similar, but groupings of four are used.
Taking again the binary number 11010110;

grouped in fours 1101 0110
Hex D 6

The octal number 326 and the hex number D6 are both
representations of the binary number 11010110.

14.6.2 Binary arithmetic

Consider the decimal sum:

This is evaluated in three stages:

At each stage we consider three `inputs'; two digits and a
possible carry from the previous stage. Each stage has two
outputs, a sum digit and a possible carry to the next, more
significant state. A single digit adder can therefore be
considered as Figure 14.47(a). Several single digit adders
can be cascaded, as Figure 14.47(b), to give an adder of
any required number of digits. Note the carry out of the
most significant stage becomes the most significant digit.
Binary addition is similar, except that there are only two

possible values for each digit. If Figure 14.47(a) is a binary
adder, there are eight possible input combinations:

An example of binary arithmetic is

The implementation of the adder truth table is a simple
problem of combinational logic; one possible solution is
shown on Figure 14.47(c). In practice, of course, adders
such as the TTL 7483 are readily available in IC form.
Negative numbers are generally represented in a form

called two's complement. The most significant digit repre-
sents the sign, being 1 for negative numbers and 0 for posi-
tive numbers. The value part of the number is
complemented and 1 added. For example:

�12 in two's complement is 01100 (the MSB 0 indicating
a positive number).

To get to two's complement for �12 we complement
1100 giving 0011, set the MSB to 1 giving 10011 then add 1
giving 10100 which is the two's complement representation
of �12.
Similarly

In each case, addition of the positive and negative num-
ber will give the result zero, e.g.

The top carry is lost, giving the correct result of zero.
Two's complement representation allows subtraction to

be done by adding a negative number, for example 12 � 3

//integras/b&h/Eer/Final_06-09-02/eerc014

14/26 Digital control systems

Figure 14.47 Adder circuits: (a) representation of a one digit adder. This block diagram will be the same regardless of the number base used;
(b) construction of a four digit adder from four identical one digit adders; (c) one bit (i.e. one digit) binary adder logic diagram

The top bit is lost giving the correct result of �9. but simpler in that only four multiplication results need to
Multiplication and division are rarely required in simple be considered:

logic systems and are generally best implemented with some
form of microprocessor assembly in conjunction with specia- 1 �(1 �(0;& 1 �(0 �(0;& 0 �(1 �(0;& 0 �(0 �(0

list mathematical co-processors such as the AMD9511. If a A typical binary multiplication is therefore
hardware solution is required it can be based on the addition
of weighted partial sums. Consider the decimal multiplication

The multiplicand is multiplied by each digit of the multi- Note that multiplying two four bit numbers can give an
plier in turn and the part results added with appropriate eight bit result. If two binary numbers A & B are to be multi-
weighting to give the result. Binary multiplication is similar plied, therefore, partial sums are obtained by multiplying

//integras/b&h/Eer/Final_06-09-02/eerc014

Counters and shift registers 14/27

(i.e. gating) A by each bit of B to form as many partial sums
as there are bits in B. These partial sums are then weighted
and added to give the result as above.
The fastest multiplication can be obtained by using Read

Only Memories (ROMs) programmed with an entire multi-
plication table. The multiplicand and the multiplier then act
as the ROM address and the result is simply read. Two 1 k
bit ROMs can form a four by four multiplier with no
additional logic. The 74284 & 74285 are integrated circuits
designed specifically for this purpose.
Division is even rarer, but can also be performed using

ROMs.

14.6.3 Binary coded decimal (BCD)

A single decimal digit can take any value between 0 and 9.
Four binary digits are therefore needed to represent one
decimal digit. In BCD, each decimal digit is represented by
four bits. For example:

9 4 0 7 6
1001 0100 0000 0111 0110

BCD is not as efficient as pure binary. 12 bits in pure bin-
ary can represent 0±4095, compared with 0±999 in BCD.
BCD, however, has advantages where decimal numbers are
to be read from decade switches or sent to digital displays.

14.6.4 Unit distance codes

Figure 14.48 shows a possible application of binary coding.
The position of a shaft is to be measured to 1 part in 16 by
means of an optical grating moving in front of four photo-
cells. The photocell outputs give a binary representation of
the shaft angular position.
Consider what may happen as the shaft goes from posi-

tion 7 (0111) to position 8 (1000). It is unlikely that all the
cells will switch together, so we could get

or any other lengthy sequence of four bits. These possible
incorrect intermediate states can be avoided by using a code
in which only one bit changes between adjacent positions.
Such codes are called unit distance codes.
The commonest unit distance code is the Gray code,

shown in four bit form below.
It will be noted that the code is reflected about the centre.

Sometimes the term `reflected code' is used for unit distance

Figure 14.48 Encoding an angular position into a binary signal with a
shaft encoder

codes. A unit distance code can be constructed to any even
base by taking an equal number of combinations above and
below the centre point of a Gray code. A decimal version
(called the XS3 cyclic BCD code) is also shown. In this code
zero is 0010, one is 0110, two is 0111 and so on to nine
which is 1010.
Conversion between binary and Gray code is straightfor-

ward, and is achieved with XOR gates as shown on
Figure 14.49(a) and (b).

14.7 Counters and shift registers

14.7.1 Ripple counters

Counters are used for two basic purposes. The first, and
obvious, use is the counting, or totalising, of external events.
The second use of counters is the division of a frequency
to give a new, lower frequency.
The `building block' of all counters is the toggle flip flop

which changes state each time its clock input is pulsed.
Usually the toggling occurs on the negative edge as shown
on Figure 14.50(a). A toggle flip flop can be constructed
from JK or D type flip flops as shown on Figure 14.50(b, c).
If the Q output of a toggle flip flop is connected to the

clock input of the next stage as shown on Figure 14.51(a), a
simple binary counter can be constructed to any desired
length. Figure 14.51 is a 3 bit counter with A the LSB and
C the MSB. This counts:

//integras/b&h/Eer/Final_06-09-02/eerc014

14/28 Digital control systems

Figure 14.49 Conversion between binary and Gray codes: (a) binary to Gray; (b) Gray to binary

Figure 14.50 The toggle flip flop: (a) operation, the output changes state for each input pulse; (b) a JK toggle flip flop; (c) a D type connected to
make a toggle flip flop

Another pulse will take it to state 0 again. It can be seen
�that Figure 14.51 is counting up. To count down, the Q out-

puts are connected to the input of the following stage and
the signal outputs taken from the Q lines.
There are two limitations to the speed at which a counter

chain similar to Figure 14.51 can operate. The first is the
maximum speed at which the first (fastest) stage can toggle.
The second restriction is not so obvious.
Consider the case of an 8 bit counter going from

01111111 to 10000000. The LSB toggling causes the next
to toggle and so on to the MSB. The change has to propa-
gate through all 8 bits of the counter, so circuits similar to
Figure.14.51 are called ripple counters. During the `ripple'
the counter will assume invalid states and cannot
be sensibly read. Obviously the propagation delay through
all the stages should be considerably less than the input

period. High speed applications use synchronous counters,
described below.
In Figure 14.51 the frequency of output C is precisely one

eighth of the input frequency. A simple ripple counter can
therefore also act as a frequency divider. If we define

N �(fin =fout

then N �(2m for m binary stages.
It will also be seen that the output of any stage of a binary

counter has equal mark space ratio regardless of the input
mark/space providing the input frequency is constant.
Although it is feasible to construct ripple counters with D

type and JK flip flops it is usually more cost effective to use
MSI ICs such as the TTL 7493 4 bit counter or the CMOS
4024 7 bit counter. These incorporate features such as a
reset line to take the counter to a zero state.

Figure 14.51 A simple three bit binary ripple counter constructed from three toggle flip flops

//integras/b&h/Eer/Final_06-09-02/eerc014

Counters and shift registers 14/29

14.7.2 Synchronous counters

Ripple counters are limited in both speed and length by the
cumulative ripple through propagation delay and also tem-
porarily exhibit invalid outputs. Although these limitations
are not important in slow speed applications, they can cause
difficulties in high speed counting.
These restrictions can be overcome by the use of a

synchronous counter where all required outputs change
simultaneously. There is no ripple propagation delay through
the counters and no transient false count stages. The only
speed restriction is the toggling frequency of the first stage.
The building block of a synchronous counter is the JK

flip flop/AND gate arrangement of Figure 14.52(a). If the
T input is 1, the JK flip flop will toggle on the receipt of a
clock pulse. If the T input is D, the flip flop will not respond
to a clock pulse. The carry output is 1 if T is 1 and Q is 1.
A synchronous up counter is constructed as Figure

14.52(b), which is simply the circuit of Figure 14.52(a) repeated.
Note that the clock input is common to all stages, and the
carry from one stage is the T input of the next.
It will be seen that the T inputs, Tb, Tc, Td will be 1 when

all the preceding outputs are 1. Tc will be 1, for example,

when A and B are both 1. This is the condition when a
counter stage should toggle, taking DCBA from, say, 0011
to 0100.
It is also possible to construct a synchronous down coun-

ter by counting the AND gate input of Figure 14.52(a) to
�the Q output rather than the Q, and observing the counter

state on the Q output. A synchronous up/down counter
with selectable direction can be constructed as Figure
14.53. If the direction line is a 1, gates 1, 2, 3 are enabled,
the Q outputs pass to the next stage and the counter counts

�up. If the direction line is a 0, gates 4, 5, 6 are enabled, the Q
outputs pass to the next stage and the counter counts down.

14.7.3 Non binary counters

Counting to non binary bases is often required, a BCD
count is probably the most common requirement. When
the required count is a subset of a straight binary count,
(e.g. BCD), the circuit of Figure 14.54(a) can be used. The
counter output is decoded by external logic. When the
counter reaches the desired maximum count the decoder

Figure 14.52 Synchronous counters: (a) basic circuit for a synchronous counter; (b) four bit series connected synchronous up counter

Figure 14.53 Synchronous selectable up/down counter

//integras/b&h/Eer/Final_06-09-02/eerc014

14/30 Digital control systems

Figure 14.54 Non binary counters: (a) principle of operation; (b) logic diagram for a BCD up counter; (c) counter operation

output forces the counter to its zero state (which is 0000 for
a BCD counter, but need not be for other counters).
A single BCD stage constructed on these principles is

shown on Figure 14.54(b). The circuit shown is a ripple
counter, but could equally well be a synchronous counter.
Gate A detects a count of ten (binary 1010) and resets the
counter to zero via direct reset inputs on the JK flip flops.
Waveforms are shown on Figure 14.54(c).
Where a non binary count is needed (e.g. a Gray code

count), it is best to use synchronous counters and an
arrangement similar to Figure 14.55. This is drawn for D
type flip flops, but JK based design is similar.
A combinational logic network looks at the counter out-

puts and sets the D inputs for the next state. If the counter,
say, was required to step from 1101 to 0011, the combina-
tional logic output to the D inputs would be 0011 for an
input of 1101. Effectively there are four combinational
circuits in the network, one for each D input.

14.7.4 Shift registers

A simple shift register is shown on Figure 14.56(a). Data
applied to the serial input, S in, will move one place to the
right on each clock pulse as shown on the timing diagram of
Figure 14.56(b).
Shift registers are used for parallel/serial and serial/

parallel conversions. They are also the basis of multiplica-
tion and division circuits as a shift of one place towards the
MSB is equivalent to a multiplication by 2, and one place
towards the LSB an integer division of 2.

14.8 Sequencing and event driven logic

Many logic systems are driven by randomly occurring
external events, and follow a sequence of operations. In such
systems, the output states do not depend solely on the input

//integras/b&h/Eer/Final_06-09-02/eerc014

Sequencing and event driven logic 14/31

Figure 14.55 Generalised synchronous non binary counter using D type flip flops. Any count pattern can be produced with this arrangement.
The principle can also be implemented using JK flips flops.

Figure 14.56 Simple shift register constructed from D type flip flops: (a) logic diagram; (b) operation

states, but also on what the system was doing last. These
types of systems are said to be sequencing and event driven
logic. Sequencing logic is designed using a state diagram.
This shows the possible conditions the system can be in,
the conditions that are required to move from one state to
the next, and the outputs required in each state.
Figure 14.57 shows a possible state diagram for a gas

burner control. When the start PB is pressed a 15 second
air purge is given (set by timer 1). The pilot valve is opened,
and the igniter started for 4 seconds (timer 2). If, at the end
of this time, the flame detector shows the flame to be lit, the
main gas valve is opened. At any time the stop button ter-
minates the sequence. A non valid signal from the flame
detector (i.e. flame present in states 1 and 2 or no flame in

state 4) puts the system to an alarm state, as does the
incorrect signal from the air flow switch. Note that these
are checked for being `unfrigged' at the start of the sequence.
Event driven logic is built around flip flops, usually one

for each state. The flip flop corresponding to state 4 is
shown on Figure 14.58(a), and is set by the required conditions
from state 3 and reset by the possible next states (1 and 5).
Outputs are simply obtained by ORing the necessary
states. The pilot output, shown on Figure 14.58(b), is simply
State 3 OR State 4.
It is possible to minimise event driven circuits to use fewer

flip flops, but such an approach is usually not required
as it makes the operation more difficult to understand.
A straightforward state diagram similar to Figure 14.57

//integras/b&h/Eer/Final_06-09-02/eerc014

14/32 Digital control systems

Figure 14.57 State diagram and output table for control of a gas burner

Figure 14.58 Implementation of a state diagram: (a) one of the five states of the gas burner control. Each state is represented by a flip flop and is
set by transitions to the state and reset by transitions from the state; (b) one of the seven outputs. Each is simply an OR function of the states in
which it is energised. The pilot valve is energised in states 3 and 4.

is easy to design, understand and modify and simplifies
fault finding for maintenance personnel.
State diagrams are being formalised by the International

Electrotechnical Commission (IEC) and the British
Standards Institute (BSI), and already exist with the
French Standard Grafset. These are basically identical to
the approach outlined above, but introduce the idea of
parallel routes which can be operated at the same time.
Figure 14.59(a) is called a divergence; state 0 can lead to
state 1 for condition `s' OR to state 2 for condition `t' with
transitions `s' and `t' mutually exclusive. This is the form
of the state diagrams described so far.
Figure 14.59(b) is a simultaneous divergence, where state 0

will lead to state 1 AND state 2 simultaneously for transition
`u'. States 1 and 2 can now run further sequences in parallel.

Figure 14.59(c) again corresponds to the state diagrams
described earlier, and is known as a convergence. The
sequence can go from state 5 to state 7 if transition `v' is
true OR from state 6 to state 7 if transition `w' is true.

Figure 14.59(d) is called a simultaneous convergence (note
again the double horizontal line) state 7 will be entered if
the left-hand branch is in state 5 AND the right-hand
branch is in state 6 AND transition `x' is true.
The state diagram is so powerful that most medium size

PLCs include it in their programming language in one form
or another. Telemecanique give it the name Grafcet (with a
`c'), others use the name Sequential Function Chart (SFC)
(Allen Bradley) or Function Block (Siemens). The IEC have
adopted state diagrams as one of their formalised methods
of PLC programming in IEC 1131.

//integras/b&h/Eer/Final_06-09-02/eerc014

Analog interfacing 14/33

Figure 14.59 State transition diagram symbols: (a) divergence; (b) simultaneous divergence; (c) convergence; (d) simultaneous convergence

14.9 Analog interfacing

14.9.1 Digital to analog conversion (DAC)

A binary number can represent an analog voltage. An 8 bit
number, for example, represents a decimal number from 0
to 255 (or �128 to �127 if two's complement representation
is used). An 8 bit number could therefore represent a
voltage from 0 to 2.55 V, say, with a resolution of 10 mV.
A device which converted a digital number to an analog
voltage is called a digital to analog converter, or DAC.
Common DAC circuits are shown on Figure 14.60, in

each case the output voltage is related to the binary pattern

on the switches. In practice, FETs are used for the switches,
and usually an IC DAC is used. The R-2R ladder circuit is
particularly well suited to IC construction.

14.9.2 Analog to digital converters (ADCs)

There are several circuits which convert an analog voltage
to its binary equivalent. The two commonest are the ramp
ADC and the successive approximation ADC. Both of these
compare the output voltage from a DAC with the input
voltage.

Figure 14.60 Digital to analog converters: (a) weighted resistors with OpAmp adder; (b) R-2R ladder

//integras/b&h/Eer/Final_06-09-02/eerc014

14/34 Digital control systems

Figure 14.61 Ramp ADC block diagram

The operation of the ramp ADC, shown on Figure 14.61,
commences with a start command which sets FF1 and resets
the counter to zero. FF1 gates pulses to which counts up.
The counter output is connected to a DAC whose output
ramps up as the counter counts up. The DAC output is
compared with the input voltage, and when the two are
equal FF1 is reset, blocking further pulses and indicating
the conversion is complete. The binary number in the coun-
ter now represents the input voltage. A variation of the
ramp ADC, known as a tracking ADC uses an up/down
counter that continuously follows the input voltage.
The ramp ADC is simple and cheap, but relatively slow

(typical conversion time >1 mS). Where high speed, or high
accuracy is required a successive approximation ADC is
used. The circuit, shown on Figure 14.62 uses an ordered
trial and error process. The sequence, shown on Figure
14.63, starts with the register cleared. The MSB is set, and
the comparator output examined. If the comparator shows
the DAC output is less than, or equal to, Vin, the bit is left
set. If the DAC output is greater than Vin, the bit is reset.
Each bit is similarly tested, in order from MSB to LSB, caus-
ing the DAC output to quickly home in on Vin as shown. In
total the number of comparisons is equal to the number of
bits, so the conversion is much faster than the ramp ADC.
Successive approximation ADCs are fast (conversion

times of a few mS) and accurate (0.01% is easily achievable).
Unlike the ramp ADC, the conversion time is constant.
They are, however, more complex and expensive than the
simpler ramp ADC.
The flash converter is the fastest ADC available, but is not

widely used for high accuracy applications because the cir-
cuit complexity increases rapidly with the number of bits.
Commercial eight bit flash encoders such as the MC10135
are to be found in digital television and digital audio appli-
cations. Figure 14.64 shows a simple three bit converter with
a resolution of one part in eight.
The input signal is compared simultaneously with seven

equally spaced voltages, for our simple example these are
1, 2, 3 V etc. If, for example, the input signal is 3.6 V, com-
parators a, b and c will all give a `1' output, and comparators
d to g will give a `0' output.
The outputs from the seven comparators are converted to

a three bit binary output by an encoder. This is simple com-
binational logic, output C, for example, being given by

C �(d �(e �(f �(g

The complexity of the combinational logic goes up consid-
erably with the number of bits and the degree of internal
checking required.
The flash converter is very fast with conversion times of a

few nanoseconds, the only constraint being the propagation

Figure 14.62 Successive approximation ADC block diagram

Figure 14.63 Operation of a successive approximation ADC

delays through the comparators and the encoder logic. It is,
however, prone to giving invalid transitory states if the
input signal is varying, going, say, 011 to 111 to 100 for a
input change from three to four volts. For this reason a
flash converter is usually preceded by a sample and hold
circuit to freeze the analog input circuit whilst the measure-
ment is being made.

14.10 Practical considerations

Real life digital systems have to connect to the outside world,
and this can often bring problems when noise and effects
such as contact bounce are encountered. Precautions also
need to be taken against inadvertent introduction of high
voltages into logic systems via inter-cable faults on the
plant.
All signals between a logic system and the outside world

should use a technique called opto isolation when cable
lengths are longer than a few metres. Figure 14.65 shows

//integras/b&h/Eer/Final_06-09-02/eerc014

Figure 14.64 Three bit flash ADC

typical input and output circuits. In both, the signal
is electrically isolated by using a coupled LED and photo-
transistor. Because the plant side power supply and digital
power supply are totally separate, the system will withstand
voltages of up to 1 kV without damage to the digital equip-
ment (although such voltages would probably damage the
plant side components of course). The absence of ground
loops and relatively high current levels (around 20 mA)
also gives excellent noise immunity.

Practical considerations 14/35

Opto isolation devices (such as the TIL 107) are usually
constructed in a 6 pin IC, and are characterised by a current
transfer ratio. This is defined as the ratio between the photo
transistor collector current to the LED current. A typical
value is 0.3, so 20 mA input current will give 6 mA, output
current. If Darlington phototransistors are used, transfer
ratios as high as 1.2 can be obtained.
Noise can also enter digital systems via the power supply

rails so excellent filtering is necessary, both the d.c. side
and (with LC filter) on the a.c. supply side. It is particularly
important to adopt a sensible segregation of 0 V rails such
that digital logic, relays/lamps and analog circuits have
separate 0 V returns to some common earth points. Under
no circumstances should high currents flow along logic 0 V
lines, or the logic 0 V be taken outside its own cubicle.
Digital ICs can also generate their own noise on power

supplies (TTL is particularly troublesome). It is therefore
highly desirable to provide each IC with its own local
0.01 mF capacitor. A single large value electrolytic has no
effect as the noise is caused by rapid di/dt and the PCB
track inductance.
Mechanical contacts from switches, relays etc, do not make

instantly but `bounce' rapidly for 1 to 4 mS due to dirt and
the uneven constant surfaces. In many purely combinational
logic systems this does not matter, but where counting,
sequencing or arithmetic circuits are used, trouble can ensue.
Contact bounce can be removed by RC filters, but the

best solution is to use a bounce removing flip flop as
Figure 14.66. Provided break before make contacts are used,
the circuit gives totally bounce free true and complement

Figure 14.65 Optical isolation between digital system and outside world: (a) d.c. input circuit; (b) a.c. input circuit; (c) d.c. output circuit; (d) a.c.
output circuit

//integras/b&h/Eer/Final_06-09-02/eerc014

14/36 Digital control systems

Figure 14.66 Bounce removing flip-flop

outputs. If the contacts are some distance from the digital
system opto isolation should, of course, be used before the
flip flop.

14.11 Data sheet notations

The following abbreviations are commonly (but by no
means universally) used on logic data sheets:

A, B, C, D . . . Data inputs. Where a number is implied,
A �(1, B �(4, C �(8 etc.

a, b, c, d, e, f, g Seven segments display signals
BCD Binary coded decimal
BI Blanking input
C Capacitor for timer or monostable
Cin, Cout Carry in, Carry out
CD Count down input (on up/down counter)
CEP Count enable parallel input
CER Count enable ripple input
CK Clock (often with >& symbol)
CS Chip select
CU Count up input (on up/down counter)
CY Carry out
D Data input on D type flip flop
DEC Decrement input (on up/down counter)
DIS Disable tri-state output
EN Enable
GND Ground or 0 V
I/O Input/output (often on bidirectional buffer)
INC Increment input (on up/down counters)
INH Inhibit
J, K Inputs on JK flip flop
LE Latch enable

LT Lamp test
MR Master reset
OEN Output enable (for tri-state gate or buffer)
OF, OV Overflow
PE Parallel enable
PH Phase input for liquid crystal display drivers
P/S Parallel/Serial selection
Qn Output with weighting (e.g. Qb)
R Reset or Resistor for timer or monostable
RBI Ripple blanking input
RBO Ripple blanking output
RC Resistor/capacitor for timer or monostable
RCO Ripple carry out
S Set input or sum output
SDL Serial input data to shift register shift left
SDR Serial input data to shift register shift right
Si Serial input
SQ (or Qs)Serial output
SR Synchronous reset
ST Strobe
T Trigger
TC Terminal count output
U/D Up/Down mode control for counter
Vcc Positive supply
Vdd Positive supply
Vss Usually 0 V
Vee Negative supply
WE Write enable
X Data inputs for data selector

Schmitt trigger action
� Sum output
>& Clock input

\

