27

RTCA
DO-178B/EUROCAE
ED-12B

Thomas K' Ferrell 27.1 Introduction
Comparison with Other Software Standards * Document

Ferrell and Associates Consulting ¢
Overview * Software as Part of the System

Uma D. Ferrell 27.2 Software Life-Cycle Processes
Ferrell and Associates Consulting Software Planning Process * Software Development
Process

27.3 Integral Process
Software Verification * Software Configuration Management *
Software Quality Assurance * Certification Liaison Process

27.4 Additional Considerations
Previously Developed Software + Tool Qualification

27.5 Additional Guidance
27.6 Synopsis

References

Further Information

27.1 Introduction

This chapter provides a summary of the document RTCA DO-178B, Software Considerations in Airborne
Systems and Equipment Certification,! with commentary on the most common mistakes made in under-
standing and applying DO-178B. The joint committee of RTCA Special Committee 167 and EUROCAE*
Working Group 12 prepared RTCA DO-178B** (also known as EUROCAE ED-12B), and it was subse-
quently published by RTCA and by EUROCAE in December 1992. DO-178B provides guidance for the
production of software for airborne systems and equipment such that there is a level of confidence in
the correct functioning of that software in compliance with airworthiness requirements. DO-178B rep-
resents industry consensus opinion on the best way to ensure safe software. It should also be noted that
although DO-178B does not discuss specific development methodologies or management activities, there
is clear evidence that by following rigorous processes, cost and schedule benefits may be realized. The
verification activities specified in DO-178B are particularly effective in identifying software problems
early in the development process.

*European Organization for Civil Aviation Equipment.

**DO0-178B and ED-12B are copyrighted documents of RTCA and EUROCAE, respectively. In this chapter, DO-
178B shall be used to refer to both the English version and the European equivalent. This convention was adopted
solely as a means for brevity.

© 2001 by CRC Press LLC

27.1.1 Comparison with Other Software Standards

DO-178B is a mature document, having evolved over the last 20 years through two previous revisions,
DO-178 and DO-178A. It is a consensus document that represents the collective wisdom of both the
industry practitioners and the certification authorities. DO-178B is self-contained, meaning that no
other software standards are referenced except for those that the applicant produces to meet DO-178B
objectives. Comparisons have been made between DO-178B and other software standards such as MIL-
STD-498, MIL-STD-2167A, IEEE/EIA-12207, IEC 61508, and U.K. Defense Standard 0-55. All of these
standards deal with certain aspects of software development covered by DO-178B. None of them has
been found to provide complete coverage of DO-178B objectives. In addition, these other standards lack
objective criteria and links to safety analyses at the system level. However, organizations with experience
applying these other standards often have an easier path to adopting DO-178B.

Advisory Circular AC 20-115B specifies DO-178B as an acceptable means, but not the only means,
for receiving regulatory approval for software in systems or equipment being certified under a Technical
Standard Order (TSO) Authorization, Type Certificate (TC), or Supplemental Type Certificate (STC).
Most applicants use DO-178B to avoid the work involved in showing that other means are equivalent to
DO-178B. Even though DO-178B was written as a guideline, it has become the standard practice within
the industry. DO-178B is officially recognized as a de facto international standard by the International
Organization for Standardization (ISO).

27.1.2 Document Overview

DO-178B consists of 12 sections, 2 annexes, and 3 appendices as shown in Figure 27.1.

Section 2 and Section 10 are designed to illustrate how the processes and products discussed in DO-178B
relate to, take direction from, and provide feedback to the overall certification process. Integral Processes
detailed in Sections 6, 7, 8, and 9, support the software life cycle processes noted in Sections 3, 4, and 5.

Section 11 provides details on the life cycle data and Section 12 gives guidance to any additional
considerations. Annex A, discussed in more detail below, provides a leveling of objectives. Annex B
provides the document’s glossary. The glossary deserves careful consideration since much effort and care
was given to precise definition of the terms. Appendices A, B, C, and D provide additional material

System Aspects Relating To Overview of Aircraft and Engine
Software Development - Section 2 Certification - Section 10

SW Life Cycle - Section 3

SW Verification - Section 6

SW Planning - Section 4

SW Configuration Mgmt. - Section 7

SW Development - Section 5 SW Quality Assurance - Section 8

Certification Liaison - Section 9

SW Life Cycle Data - Section 11 Annex A & B

Additional Considerations - Section 12 Appendices A, B, C, & D

FIGURE 27.1 Document structure.

© 2001 by CRC Press LLC

Objective Applicability | Output Control
by SW Level Category

by SW
Level

Description Ref. A |B | C | D| Description |Ref. |A|B|C|D

1 Low-level 6.32a|@® @ O Software 1114 |Q |@|@|©@

Requirements Verification

comply with Results

High-level

Requirements.

FIGURE 27.2 Example objective from Annex A.

40

35+

30

25-

20 HLevel A

15 ULevel B

10+ Level C
5 HlLevel D

;@“& 04\9‘& & O o

FIGURE 27.3 Objectives over the software development life cycle.

including a brief history of the document, the index, a list of contributors, and a process improvement
form, respectively. It is important to note that with the exception of the appendices and some examples
embedded within the text, the main sections and the annexes are considered normative, i.e., required to
apply DO-178B.

The 12 sections of DO-178B describe processes and activities for the most stringent level of software.*
Annex A provides a level by level tabulation of the objectives for lower levels of software.** This leveling
is illustrated in Figure 27.2 extracted from Annex A Table A-4, Verification of Outputs of Software Design
Process.

In addition to the leveling of objectives, Annex A tables serve as an index into the supporting text by
way of reference, illustrate where independence is required in achieving the objective, which data items
should include the objective evidence, and how that evidence must be controlled. More will be said about
the contents of the various Annex A tables in the corresponding process section of this text. If an applicant
adopts DO-178B for certification purposes, Annex A may be used as a checklist to achieve these objectives.
The FAA’s position is that if an applicant provides evidence to satisfy the objectives, then the software is
DO-178B compliant. Accordingly, the FAA’s checklists for performing audits of DO-178B developments
are based on Annex A tables.

Before discussing the individual sections, it is useful to look at a breakout of objectives as contained in
Annex A. While DO-178B contains objectives for the entire software development life cycle, there is a clear
focus on verification as illustrated by Figure 27.3. Although at first glance it appears that there is only one
objective difference between levels A and B, additional separation between the two is accomplished through

*Levels are described in Section 27.1.3, “Software as part of system.”
**Software that is determined to be at level E is outside the scope of DO-178B.

© 2001 by CRC Press LLC

the relaxation of independence requirements. Independence is achieved by having the verification or
quality assurance of an activity performed by a person other than the one who initially conducted the
activity. Tools may also be used to achieve independence.

27.1.3 Software as Part of the System

Application of DO-178B fits into a larger system of established or developing industry practices for
systems development and hardware. The system level standard is SAE ARP4754, Certification Consider-
ations for Highly-Integrated or Complex Aircraft Systems.? The relationship between system, software, and
hardware processes is illustrated in Figure 27.4.

The interfaces to the system development process were not well defined at the time DO-178B was
written. This gap was filled when ARP4754 was published in 1996. DO-178B specifies the information
flow between system processes and software processes. The focus of the information flow from the system
process to the software process is to keep track of requirements allocated to software, particularly those
requirements that contribute to the system safety. The focus of information flow from the software process
to the system process is to ensure that changes in the software requirements, including the introduction
of derived requirements (those not directly traceable to a parent requirement), do not adversely affect
system safety.

The idea of system safety, although outside the scope of DO-178B, is crucial to understanding how to
apply DO-178B. The regulatory materials governing the certification of airborne systems and equipment
define five levels of failure conditions. The most severe of these is catastrophic, meaning failures that
result in the loss of ability to continue safe flight and landing. The least severe is no effect, where the
failure results in no loss of operational capabilities and no increase in crew workload. The intervening
levels define various levels of loss of functionality resulting in corresponding levels of workload and
potential for loss of life. These five levels map directly to the five levels of software defined in DO-178B.
This mapping is shown in Figure 27.5.

It is important to note that software is never certified as a standalone entity. A parallel exists for the
hardware development process and flow of information between hardware processes and system process.
Design trade-offs between software processes and hardware processes are also taken into consideration

System
and Safety
Development
Assessment
Software Hardware
Development Development
Process Inputs Process Inputs
And Outputs And Outputs
Software Design Hardware
Development [« Tradeoffs > Development
Process Process

FIGURE 27.4 Relationship between system development process and the software development process.

© 2001 by CRC Press LLC

Failure Condition DO-178B
Software
Level

Catastrophic A
Hazardous B
Major C
Minor D
No effect E

FIGURE 27.5 Software levels.

at the system level. Software levels may be lowered by using protective software or hardware mechanisms
elsewhere in the system. Such architectural methods include partitioning, use of hardware or software
monitors, and architectures with built-in redundancy.

27.2 Software Life-Cycle Processes

The definition of how data are exchanged between the software and systems development processes is
part of the software life-cycle processes discussed in DO-178B. Life-cycle processes include the planning
process, the software development processes (requirements, design, code, and integration), and the
integral processes (verification, configuration management, software quality assurance, and certification
liaison). DO-178B defines objectives for each of these processes as well as outlining a set of activities for
meeting the objectives.

DO-178B discusses the software life-cycle processes and transition criteria between life-cycle processes
in a generic sense without specifying any particular life-cycle model. Transition criteria are defined as
“the minimum conditions, as defined by the software planning process, to be satisfied to enter a process.”
Transition criteria may be thought of as the interface points between all of the processes discussed in
DO-178B. Transition criteria are used to determine if a process may be entered or reentered. They are a
mechanism for knowing when all of the tasks within a process are complete and may be used to allow
processes to execute in parallel. Since different development models require different criteria to be satisfied
for moving from one step to the next, specific transition criteria are not defined in DO-178B. However,
it is possible to describe a set of characteristics that all well-defined transition criteria should meet. For
transition criteria to successfully assist in entry from one life-cycle process to another, they should be
quantifiable, flexible, well documented, and present for every process. It is also crucial that the process
owners agree upon the transition criteria between their various processes.

27.2.1 Software Planning Process
DO-178B defines five types of planning data* for a software development. They are
+ Plan for Software Aspects of Certification (PSAC)

+ Software Development Plan

+ Software Verification Plan

*The authors of DO-178B took great pains to avoid the use of the term “document” when referring to objective
evidence that needed to be produced to satisfy DO-178B objectives. This was done to allow for alternative data
representations and packaging as agreed upon between the applicant and the regulatory authority. For example, the
four software plans-outlining development, verification, QA, and CM may all be packaged in a single plan, just as
the PSAC may be combined with the System Certification Plan.

© 2001 by CRC Press LLC

+ Software Configuration Management Plan

+ Software Quality Assurance Plan

These plans should include consideration of methods, languages, standards, and tools to be used during
the development. A review of the planning process should have enough details to assure that the plans,
proposed development environment, and development standards (requirements, design, and code) com-
ply with DO-178B.

Although DO-178B does not discuss the certification liaison process until Section 9, the intent is that
the certification liaison process should begin during the projects’ planning phase. The applicant outlines
the development process and identifies the data to be used for substantiating the means of compliance
for the certification basis. It is especially important that the applicant outline specific features of software
or architecture that may affect the certification process.

27.2.2 Software Development Process

Software development processes include requirements, design, coding, and integration. DO-178B allows
for requirements to be developed that detail the system’s functionality at various levels. DO-178B refers
to these levels as high- and low-level requirements. System complexity and the design methodology
applied to the system’s development drive the requirements’ decomposition process. The key to under-
standing DO-178B’s approach to requirement’s definition can be summed up as, “one person’s require-
ments are another person’s design.” Exactly where and to what degree the requirements are defined is
less important than ensuring that all requirements are accounted for in the resulting design and code,
and that traceability is maintained to facilitate verification.

Some requirements may be derived from the design, architecture, or the implementation nuances of
the software and hardware. It is recognized that such requirements will not have a traceability to the
high-level requirements. However, these requirements must be verified and must also be considered for
safety effects in the system safety assessment process.

DO-178B provides only a brief description of the design, coding, and integration processes since these
tend to vary substantially between various development methodologies. The one exception to this is in
the description to the outputs of each of the processes. The design process yields low-level requirements
and software architecture. The coding process produces the source code, typically either in a high-order
language or assembly code. The result of the integration effort is executable code resident on the target
computer along with the various build files used to compile and link the executable. Each of these outputs
is verified, assured, and configured as part of the integral processes.

27.3 Integral Processes

DO-178B defines four processes as integral, meaning that they overlay and extend throughout the software
life cycle. These are the software verification process, software configuration management, software
quality assurance, and certification liaison process.

27.3.1 Software Verification*

As noted earlier, verification objectives outnumber all others in DO-178B, accounting for over two thirds
of the total. DO-178B defines verification as a combination of reviews, analyses, and testing. Verification
is a technical assessment of the results of both the software development processes and the software
verification process. There are specific verification objectives that address the requirements, design,
coding, integration, as well as the verification process itself. Emphasis is placed at all stages to assure that
there is traceability from high-level requirements to the final “as-built” configuration.

*Software Verification is a complex topic, which deserves in-depth treatment. The reader is directed to References 4,
5, and 6 for detailed discussion on verification approaches and explanation of terms.

© 2001 by CRC Press LLC

Reviews provide qualitative assessment of a process or product. The most common types of reviews
are requirements reviews, design reviews, and test procedure reviews. DO-178B does not prescribe how
these reviews are to be conducted, or what means are to be employed for effective reviews. Best practices
in software engineering process states that for reviews to be effective and consistent, checklists should be
developed and used for each type of review. Checklists provide:

+ Objective evidence of the review activity
+ A focused review of those areas most prone to error
+ A mechanism for applying “lessons learned”

+ A practical traceable means for ensuring that corrective action is taken for unsatisfactory items

Review checklists can be common across projects, but they should themselves be reviewed for appropri-
ateness and content for a particular project.

Analyses provide repeatable evidence of correctness and are often algorithmic or procedural in nature.
Common types of analyses used include timing, stack, data flow, and control flow analyses. Race condi-
tions and memory leakage should be checked as part of the timing and stack analysis. Data and control
coupling analysis should include, a minimum, basic checks for set/use and may extend to a full model
of the system’s behavior. Many types of analyses may be performed using third-party tools. If tools are
used for this purpose, DO-178B rules for tool qualification must be followed.

The third means of verification, testing, is performed to demonstrate that

+ The software product performs its intended function

+ The software does not demonstrate any unintended actions

The key to accomplishing testing correctly to meet DO-178B objectives in a cost-effective manner is to
maintain a constant focus on requirements. This requirements-based test approach represents one of the
most fundamental shifts from earlier versions of the document. As test cases are designed and conducted,
requirements coverage analysis is performed to assess that all requirements are tested. A structural coverage
analysis is performed to determine the extent to which the requirements-based test exercised the code.
In this manner, structural coverage is used as a means of assessing overall test completion. The possible
reasons for lack of structural coverage are shortcomings in requirements-based test cases or procedures,
inadequacies in software requirements, compiler generated code, unreachable, or inactive code.

As part of the test generation process, tests should be written for both normal range and abnormal
inputs (robustness). Tests should also be conducted using the target environment whenever possible.

Structural coverage and how much testing is required for compliance at the various levels are misun-
derstood topics. Level D software verification requires test coverage of high-level requirements only. No
structural coverage is required.

Low-level requirements testing is required at level C. In addition, testing of the software structure to
show proper data and control coupling is introduced. This coverage involves coverage of dependencies of
one software component on other software component via data and control. Decision coverage is required
for level B, while level A code requires Modified Condition Decision Coverage (MCDC).

For level A, structural coverage analysis may be performed on source code only to the extent that the
source code can be shown to map directly to object code. The reason for this rule is that some compilers
may introduce code or structure that is different from source code.

MCDC coverage criteria were introduced to retain the benefits of multiple-condition coverage while
containing the exponential growth in the required number of test cases required. MCDC requires that
each condition must be shown to independently affect the outcome of the decision and that the outcome
of a decision changes when one condition is changed at a time. Many tools are available to determine
the minimum test case set needed for DO-178B compliance. There is usually more than one set of test
cases that satisfy MCDC coverage.’ There is no firm policy on which set should be used for compliance.
It is best to get an agreement with the certification authorities concerning the algorithms and tools used
to determine compliance criteria.

© 2001 by CRC Press LLC

27.3.2 Software Configuration Management

Verification of the various outputs discussed in DO-178B are only credible when there is clear definition
of what has been verified. This definition or configuration is the intent of the DO-178B objectives for
configuration management. The six objectives in this area are unique, in that they must be met for all
software levels. This includes identification of what is to be configured, how baselines and traceability
are established, how problem reports are dealt with, how the software is archived and loaded, and how
the development environment is controlled.

While configuration management is a fairly well-understood concept within the software engineering
community (as well as the aviation industry as a whole), DO-178B does introduce some unique termi-
nology that has proven to be problematic. The concept of control categories is often misunderstood in
a way that overall development costs are increased, sometimes dramatically. DO-178B defines two control
categories (CCl and CC2) for data items produced throughout the development.

The authors of DO-178B intended the two levels as a way of controlling the overhead costs of creating
and maintaining the various data items. Items controlled as CC2 have less requirements to meet in the
areas of problem reporting, baselining, change control, and storage. The easiest way to understand this
is to provide an example. Problem reports are treated as a CC2 item. If problem reports were a CC1 item
and a problem was found with one of the entries on the problem report itself, a second problem report
would need to be written to correct the first one.

A second nuance of control categories is that the user of DO-178B may define what CC1 and CC2 are
within their own CM system as long as the DO-178B objectives are met. One example of how this might
be beneficial is in defining different retention periods for the two levels of data. Given the long life of
airborne systems, these costs can be quite sizeable. Another consideration for archival systems selected
for data retention is technology obsolescence of the archival medium as well as means of retrieval.

27.3.3 Software Quality Assurance

Software quality assurance (SQA) objectives provide oversight of the entire DO-178B process and require
independence at all levels. It is recognized that it is prudent to have an independent assessment of quality.
SQA is active from the beginning of the development process. SQA assures that any deviations during
the development process from plans and standards are detected, recorded, evaluated, tracked, and
resolved. For levels A and B, SQA is required to assure transition criteria are adhered to throughout the
development process.

SQA works with the CM process to assure that proper controls are in place and applied to life cycle
data. This last task culminates in the conduct of a software conformity review. SQA is responsible for
assuring that the as-delivered products matches the as-built and as-verified product. The common term
used for this conformity review in commercial aviation industry is “First Article Inspection.”

27.3.4 Certification Liaison Process

As stated earlier, the certification liaison process is designed to streamline the certification process by
ensuring that issues are identified early in the process. While DO-178B outlines twenty distinct data items
to be produced in a compliant process, three of these are specific to this process and must be provided
to the certifying authority. They are

+ Plan for Software Aspects of Certification (PSAC)
+ Software Configuration Index
+ Software Accomplishment Summary
Other data items may be requested by the certification authority, if deemed necessary. As mentioned
earlier, applicants are encouraged to start a dialogue with certification authorities as early in the process

as possible to reach a common understanding of a means of achieving compliance with DO-178B. This
is especially important as new technology is applied to avionics and as new personnel enter the field.

© 2001 by CRC Press LLC

Good planning up front, captured in the PSAC, should minimize surprises later in the development
process, thus minimizing cost. Just as the PSAC states what you intend to do, the accomplishment summary
captures what you did. It is used to gauge the overall completeness of the development process and to
ensure that all objectives of DO-178B have been satisfied.

Finally, the configuration index serves as an overall accounting of the content of the final product as
well as the environment needed to recreate it.

27.4 Additional Considerations

During the creation of DO-178B, it was recognized that new development methods and approaches
existed for developing avionics. These included incorporation of previously developed software, use of
tools to accomplish one or more of the objectives required by DO-178B, and application of alternate
means in meeting an objective such as formal methods. In addition, there are a small class of unique
issues such as field-loadable and user-modifiable software. Section 12 collects these items together under
the umbrella title of Additional Considerations. Two areas, Previously Developed Software (PDS) and
Tool Qualification, are common sources of misunderstanding in applying DO-178B.

27.4.1 Previously Developed Software

PDS is software that falls in one of the following categories:

+ Commercial off-the-shelf software (e.g., shrink-wrap)

+ Airborne software developed to other standards (e.g., MIL-STD-498)

+ Airborne software that predates DO-178B (e.g., developed to the original DO-178 or DO-178A)
+ Airborne software previously developed at a lower software level

The use of one or more of these types of software should be planned for and discussed in the PSAC.
In every case, some form of gap analysis must be performed to determine where specific objectives of
DO-178B have not been met. It is the applicant’s responsibility to perform this gap analysis and propose
to the regulatory authority a means for closing any gaps. Alternate sources of development data, service
history, additional testing, reverse engineering, and wrappers* are all ways of ensuring the use of PDS is
safe in the new application.

In all cases, usage of PDS must be considered in the safety assessment process and may require that
the process be repeated if the decision to use a PDS component occurs after the approval of PSAC. A
special instance of PDS usage occurs when software is used in a system to be installed on an aircraft
other than the one for which it was originally designed. Although the function may be the same, interfaces
with other aircraft systems may behave differently. As before, the system safety assessment process must
be repeated to assure that the new installation operates and behaves as intended.

If service history is employed in making the argument that a PDS component is safe for use, the
relevance and sufficiency of the service history must be assessed. Two tests must be satisfied for the
service history approach to work. First, the application for which history exists must be shown to be
similar to the intended new use of the PDS. Second, there should be data, typically problem reports,
showing how the software has performed over the period for which credit is sought. The authors of
DO-178B intended that any use of PDS be shown to meet the same objectives required of newly
developed code.

Prior to identifying PDS as part of a new system, it is prudent to investigate and truly understand the
costs of proving that the PDS satisfies the DO-178B objectives. Sometimes, it is easier and cheaper to
develop the code again!

*Wrappers is a generic term used to refer to hardward or software components that isolate and filter inputs to
and from the PDS for the purposes of protecting the system from erroneous PDS behavior.

© 2001 by CRC Press LLC

27.4.2 Tool Qualification

DO-178B requires qualification of tools when the processes noted by DO-178B are eliminated, reduced,
or automated by a tool without its output being verified according to DO-178B. If the output of a tool
is demonstrated to be restricted to a particular part of the life cycle, the qualification can also be limited
to that part of the life cycle. Only deterministic tools can be qualified.

Tools are classified as development tools and verification tools. Development tools produce output
that becomes a part of the airborne system and thus can introduce errors. Rules for qualifying develop-
ment tools are fashioned after the rules of assurance for generating code. Once the need for development
tool qualification is established, a tool qualification plan must be written. The rigor of the plan is
determined by the nature of the tool and the level of code upon which it is being used. A tool accom-
plishment summary is used to show compliance with the tool qualification plan. The tool is required to
satisfy the objectives at the same level as the software it produces, unless the applicant can justify a
reduction in the level to the certification authority.

Verification tools cannot introduce errors but may fail to detect them or mask their presence. Quali-
fication criterion for verification tools is the demonstration of its requirements under normal operational
conditions. Compliance is established by noting tool qualification within PSAC and Software Accom-
plishment Summary. A tool qualification plan and a tool accomplishment summary are not required for
verification tools by DO-178B although an applicant may find them useful for documenting the quali-
fication effort.

27.5 Additional Guidance

RTCA SC-190/EUROCAE WG-52 was formed in 1997 to address issues that were raised by the industry
and certification authorities in the course of applying DO-178B since its release in 1992. The membership
in this committee includes over 200 industry and regulatory representatives from the U.S. and Europe.
The outputs of the SC-190 consensus process are available to industry from the RTCA or EUROCAE in
the form of errata, frequently asked questions, and discussion papers. These outputs have been collated
and published in DO-248/ED-94.7

27.6 Synopsis

DO-178B provides objectives for software life-cycle processes, activities to achieve these objectives, and
outlines objective evidence for demonstrating that these objectives were accomplished. The purpose of
software compliance to DO-178B is to provide considerable confidence that the software is suitable for
use in airborne systems. DO-178B should not be viewed as a documentation guide.

Compliance data are intended to be a consequence of the process. Complexity and extent of the
required compliance data depend upon the characteristics of the system/software, associated development
practices, and the interpretation of DO-178B, especially when it is applied to new technology and no
precedent is available.

Finally, it has to be emphasized that DO-178B objectives do not directly deal with safety. Safety is dealt
with at the system level via the system safety assessment. DO-178B objectives help verify the correct
implementation of safety-related requirements that flow from the system safety assessment. Like any
standard, DO-178B has good points and bad points (and even a few errors). However, careful consider-
ation of its contents, taken together with solid engineering judgment, should result in better and safer
airborne software.

References

1. RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification,
RTCA Inc.,Washington, D.C, 1992. Copies of DO-178B may be obtained from RTCA, Inc., 1140
Connecticut Avenue, NW, Suite 1020, Washington, D.C. 20036-4001 U.S. (202) 833-9339. This
document is also known as ED 12B, Software Considerations in Airborne Systems and Equipment

© 2001 by CRC Press LLC

Certification, EUROCAE, Paris, 1992. Copies of ED-12B may be obtained from EUROCAE, 17,
rue Hamelin, 75783 PARIS CEDEX France, (331) 4505-7188.

2. SAE ARP4754, Certification Considerations for Highly-Integrated or Complex Aircraft Systems, SAE,
Warrendale, PA, 1996.

3. Chilenski, J.J. and Miller, P.S., Applicability of modified condition/decision coverage to software
testing, Software Eng. J., 193, September 1994.

4. Myers, G. J., The Art of Software Testing, John Wiley & Sons, New York, 1979.

Beizer, B., Software Testing Techniques, 2" ed., Coriolis Group, Scottsdale, AZ, 1990.

6. McCracken, D. and Passafiume, M., Software Testing and Evaluation, Benjamin/Cummings, Menlo
Park, CA, 1987.

7. RTCA DO-248, Annual Report for Clarification of DO-178B “Software Considerations in Airbone
Systems and Equipment Certification; EOROCAE ED-94, Annual Report for Clarification of ED-
12B “Software Considerations in Airbone Systems and Equipment Certification.”

b

Further Information

1. The Federal Aviation Administration Web Page: www.faa.gov.

2. The RTCA Web Page: www.rtca.org.

3. Spitzer, C.R., Digital Avionics Systems Principles and Practice, 2nd ed., McGraw-Hill, New York,
1993.

4. Wichmann, B.A., A Review of a Safety-Critical Software Standard, National Physical Laboratory,
Teddington, Middlesex, U.K. (report is not dated).

5. Herrman, D.S., Software Safety and Reliability, IEEE Computer Society Press, Washington, D.C.,
1999.

© 2001 by CRC Press LLC

